Question Number 121227 by benjo_mathlover last updated on 06/Nov/20 $$\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:=\:\mathrm{e}^{−\mathrm{2x}} \: \\ $$ Answered by Lordose last updated on 06/Nov/20 $$\frac{\mathrm{dy}}{\mathrm{dx}}=\:\int\mathrm{e}^{−\mathrm{2x}} \mathrm{dx} \\…
Question Number 55597 by ajfour last updated on 27/Feb/19 $$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+\mathrm{6}{y}\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${Please}\:{solve}\:{the}\:{differential}\:{eq}. \\ $$ Answered by mr W last updated on 27/Feb/19…
Question Number 121028 by bramlexs22 last updated on 05/Nov/20 Answered by liberty last updated on 05/Nov/20 $$\mathrm{no}.\:\mathrm{this}\:\mathrm{not}\:\mathrm{separable}\:\mathrm{but}\:\mathrm{it}\:\mathrm{is}\:\mathrm{a}\:\mathrm{homogenous} \\ $$$$\mathrm{diff}\:\mathrm{equation}. \\ $$$$\Rightarrow\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{x}^{\mathrm{4}} +\mathrm{2y}^{\mathrm{4}} }{\mathrm{xy}^{\mathrm{3}} }\:\:;\:\left[\:\mathrm{put}\:\mathrm{y}\:=\:\mathrm{zx}\:\right] \\…
Question Number 120905 by bemath last updated on 03/Nov/20 $$\:\:\mathrm{y}'\:=\:\mathrm{xy}^{\mathrm{2}} −\frac{\mathrm{y}}{\mathrm{x}} \\ $$ Answered by Bird last updated on 03/Nov/20 $$\Rightarrow\frac{{y}^{'} }{{y}^{\mathrm{2}} }={x}−\frac{\mathrm{1}}{{yx}}\:{let}\:\frac{\mathrm{1}}{{y}}={z}\:\Rightarrow{z}^{'} =−\frac{{y}^{'} }{{y}^{\mathrm{2}}…
Question Number 55351 by sayarthet92 last updated on 22/Feb/19 $$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 120811 by fajri last updated on 03/Nov/20 $${Find}\:{the}\:{singular}\:{point}\:{in}\:{the} \\ $$$${differential}\:{equation}\:: \\ $$$$ \\ $$$$\left({x}^{\mathrm{3}} \:−\:{x}^{\mathrm{2}} \:−\:\mathrm{9}{x}\:+\:\mathrm{9}\right)\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\mathrm{2}{x}\frac{{dy}}{{dx}}\:+\:\left({x}\:−\:\mathrm{3}\right){y}\:=\:\mathrm{0} \\ $$ Answered by 675480065…
Question Number 120810 by fajri last updated on 03/Nov/20 $${Determine}\:{the}\:{convergence}\:{intervval}\:{of}\:: \\ $$$$\underset{{n}\:=\:\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \:\left({x}\:−\:\mathrm{1}\right)^{{n}} \\ $$ Answered by 675480065 last updated on 03/Nov/20 $$\underset{\mathrm{n}\rightarrow\infty}…
Question Number 120595 by fajri last updated on 01/Nov/20 $$ \\ $$$${Solution}\:{from}\:{Differential}\:{Equation}\:{System}\:: \\ $$$$ \\ $$$$\left\{_{{x}_{\mathrm{2}} ^{'} \:=\:\:\mathrm{2}{x}_{\mathrm{1}} \:−\:\mathrm{3}{x}_{\mathrm{2}} \:\:,\:{x}_{\mathrm{2}} \:\left(\mathrm{0}\right)\:=\:−\mathrm{1}} ^{{x}_{\mathrm{1}} ^{'} \:=\:\mathrm{2}{x}_{\mathrm{1}} −\:\mathrm{2}{x}_{\mathrm{2}}…
Question Number 185833 by normans last updated on 28/Jan/23 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 54663 by Mikael_Marshall last updated on 08/Feb/19 $${y}\:=\:{cos}\mathrm{2}{t}×{sen}\mathrm{2}{t} \\ $$$$ \\ $$$${y}'\:=\:? \\ $$ Commented by maxmathsup by imad last updated on 08/Feb/19…