Menu Close

Category: Differential Equation

Question-121028

Question Number 121028 by bramlexs22 last updated on 05/Nov/20 Answered by liberty last updated on 05/Nov/20 $$\mathrm{no}.\:\mathrm{this}\:\mathrm{not}\:\mathrm{separable}\:\mathrm{but}\:\mathrm{it}\:\mathrm{is}\:\mathrm{a}\:\mathrm{homogenous} \\ $$$$\mathrm{diff}\:\mathrm{equation}. \\ $$$$\Rightarrow\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{x}^{\mathrm{4}} +\mathrm{2y}^{\mathrm{4}} }{\mathrm{xy}^{\mathrm{3}} }\:\:;\:\left[\:\mathrm{put}\:\mathrm{y}\:=\:\mathrm{zx}\:\right] \\…

y-xy-2-y-x-

Question Number 120905 by bemath last updated on 03/Nov/20 $$\:\:\mathrm{y}'\:=\:\mathrm{xy}^{\mathrm{2}} −\frac{\mathrm{y}}{\mathrm{x}} \\ $$ Answered by Bird last updated on 03/Nov/20 $$\Rightarrow\frac{{y}^{'} }{{y}^{\mathrm{2}} }={x}−\frac{\mathrm{1}}{{yx}}\:{let}\:\frac{\mathrm{1}}{{y}}={z}\:\Rightarrow{z}^{'} =−\frac{{y}^{'} }{{y}^{\mathrm{2}}…

Find-the-singular-point-in-the-differential-equation-x-3-x-2-9x-9-d-2-y-dx-2-2x-dy-dx-x-3-y-0-

Question Number 120811 by fajri last updated on 03/Nov/20 $${Find}\:{the}\:{singular}\:{point}\:{in}\:{the} \\ $$$${differential}\:{equation}\:: \\ $$$$ \\ $$$$\left({x}^{\mathrm{3}} \:−\:{x}^{\mathrm{2}} \:−\:\mathrm{9}{x}\:+\:\mathrm{9}\right)\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\mathrm{2}{x}\frac{{dy}}{{dx}}\:+\:\left({x}\:−\:\mathrm{3}\right){y}\:=\:\mathrm{0} \\ $$ Answered by 675480065…

Solution-from-Differential-Equation-System-x-2-2x-1-3x-2-x-2-0-1-x-1-2x-1-2x-2-x-1-0-1-

Question Number 120595 by fajri last updated on 01/Nov/20 $$ \\ $$$${Solution}\:{from}\:{Differential}\:{Equation}\:{System}\:: \\ $$$$ \\ $$$$\left\{_{{x}_{\mathrm{2}} ^{'} \:=\:\:\mathrm{2}{x}_{\mathrm{1}} \:−\:\mathrm{3}{x}_{\mathrm{2}} \:\:,\:{x}_{\mathrm{2}} \:\left(\mathrm{0}\right)\:=\:−\mathrm{1}} ^{{x}_{\mathrm{1}} ^{'} \:=\:\mathrm{2}{x}_{\mathrm{1}} −\:\mathrm{2}{x}_{\mathrm{2}}…