Menu Close

Category: Differential Equation

Question-121028

Question Number 121028 by bramlexs22 last updated on 05/Nov/20 Answered by liberty last updated on 05/Nov/20 no.thisnotseparablebutitisahomogenousdiffequation.$$\Rightarrow\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{x}^{\mathrm{4}} +\mathrm{2y}^{\mathrm{4}} }{\mathrm{xy}^{\mathrm{3}} }\:\:;\:\left[\:\mathrm{put}\:\mathrm{y}\:=\:\mathrm{zx}\:\right] \

Solution-from-Differential-Equation-System-x-2-2x-1-3x-2-x-2-0-1-x-1-2x-1-2x-2-x-1-0-1-

Question Number 120595 by fajri last updated on 01/Nov/20 SolutionfromDifferentialEquationSystem:$$\left\{_{{x}_{\mathrm{2}} ^{'} \:=\:\:\mathrm{2}{x}_{\mathrm{1}} \:−\:\mathrm{3}{x}_{\mathrm{2}} \:\:,\:{x}_{\mathrm{2}} \:\left(\mathrm{0}\right)\:=\:−\mathrm{1}} ^{{x}_{\mathrm{1}} ^{'} \:=\:\mathrm{2}{x}_{\mathrm{1}} −\:\mathrm{2}{x}_{\mathrm{2}}…