Question Number 114176 by bemath last updated on 17/Sep/20 $$\left(\mathrm{1}\right)\:\mathrm{3}{x}^{\mathrm{2}} \:\mathrm{ln}\:\left({y}\right)\:{dx}\:+\:\frac{{x}^{\mathrm{3}} }{{y}}{dy}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\left({e}^{\mathrm{2}{x}} +\mathrm{4}\right){y}\:'=\:{y}\: \\ $$$$\left(\mathrm{3}\right)\:{dz}\:=\:{t}\left({t}^{\mathrm{2}} +\mathrm{1}\right).{e}^{\mathrm{2}{z}} \:{dt}\: \\ $$ Commented by bobhans last…
Question Number 48585 by cesar.marval.larez@gmail.com last updated on 25/Nov/18 $${Who}\:{knows}\:{how}\:{to}\:{define}\:{a}\: \\ $$$${differential}\:{equation}\:{geometrically}? \\ $$$${I}\:{want}\:{to}\:{learn}\:{plz} \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 25/Nov/18 $${pls}\:{put}\:{the}\:{same}\:{question}\:{in}\:{google}\:{and}\:{download} \\…
Question Number 48525 by cesar.marval.larez@gmail.com last updated on 25/Nov/18 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 47965 by Rio Michael last updated on 17/Nov/18 $${A}\:{small}\:{body}\:{is}\:{made}\:{to}\:{travel}\:{linearly}\:{t}\:{sconds}\:{after}\:{the}\: \\ $$$${start}.{Its}\:{distance}\:{S}\:{meters}\:{from}\:{a}\:{fix}\:{point}\:{O}\:{on}\:{a}\: \\ $$$${linear}\:{scale}\:{is}\:{given}\:{by}\:{S}\:=\:{t}^{\mathrm{2}} −\mathrm{5}{t}\:+\:\mathrm{6}. \\ $$$$\left.{a}\right)\:{How}\:{far}\:{is}\:{the}\:{body}\:{from}\:{O}\:{at}\:{the}\:{start}? \\ $$$$\left.{b}\right){with}\:{what}\:{velocity}\:{does}\:{it}\:{start}? \\ $$$$\left.{c}\right){when}\:{is}\:{the}\:{body}\:{momentarily}\:{at}\:{rest}? \\ $$$$\left.{d}\right)\:{What}\:{is}\:{the}\:{acceleration}\:{of}\:{the}\:{body}? \\…
Question Number 113464 by bemath last updated on 13/Sep/20 $$\:\left({x}^{\mathrm{2}} \:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+{x}\:\frac{{dy}}{{dx}}\:+\:\mathrm{1}\right).{y}\:=\:\mathrm{0} \\ $$ Answered by mathmax by abdo last updated on 13/Sep/20 $$\mathrm{y}=\mathrm{0}\:\mathrm{is}\:\mathrm{soluton}\:\mathrm{if}\:\mathrm{y}\neq\mathrm{0}\:\mathrm{weget}\:\mathrm{x}^{\mathrm{2}}…
Question Number 113243 by ShakaLaka last updated on 11/Sep/20 Commented by ShakaLaka last updated on 11/Sep/20 $$\mathrm{Can}\:\mathrm{anybody}\:\mathrm{solve}\:\mathrm{this} \\ $$$$\mathrm{question}? \\ $$ Commented by mr W…
Question Number 47624 by Umar last updated on 12/Nov/18 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{d}.\mathrm{e}\:\mathrm{using}\:\mathrm{method}\:\mathrm{of}\:\mathrm{variation} \\ $$$$\mathrm{of}\:\mathrm{parameter}. \\ $$$$ \\ $$$$\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{3}\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{2y}=\mathrm{sin}\left(\mathrm{e}^{\mathrm{x}} \right) \\ $$ Answered by tanmay.chaudhury50@gmail.com last…
Question Number 47623 by Umar last updated on 12/Nov/18 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{d}.\mathrm{e}\:\mathrm{using}\:\mathrm{method}\:\mathrm{of}\:\mathrm{variation} \\ $$$$\mathrm{of}\:\mathrm{parameter}. \\ $$$$ \\ $$$$\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }+\mathrm{3}\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{2y}=\mathrm{sin}\left(\mathrm{e}^{\mathrm{x}} \right) \\ $$ Terms of Service Privacy…
Question Number 113060 by bemath last updated on 12/Sep/20 $$\:\left(\mathrm{1}\right)\:\sqrt{\frac{\mathrm{dy}}{\mathrm{dx}}}\:=\:\frac{\mathrm{d}\left(\sqrt{\mathrm{y}}\right)}{\mathrm{dx}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{x}^{\mathrm{2}} \:\equiv\:\mathrm{73}\:\left(\mathrm{mod}\:\mathrm{216}\right) \\ $$$$\left(\mathrm{3}\right)\:\mathrm{If}\:\mathrm{2}^{\mathrm{x}_{\mathrm{1}} } +\mathrm{2}^{\mathrm{x}_{\mathrm{2}} } +\mathrm{2}^{\mathrm{x}_{\mathrm{3}} } +…+\mathrm{2}^{\mathrm{x}_{\mathrm{n}} } =\mathrm{80},\mathrm{000} \\ $$$$\:\mathrm{where}\:\mathrm{x}_{\mathrm{1}}…
Question Number 47510 by Rio Michael last updated on 11/Nov/18 $${the}\:{curve}\:{y}\:=\:\mathrm{3}{x}^{\mathrm{2}} \:+\mathrm{4}\:\left({x}=\mathrm{2}\:{and}\:{x}=\mathrm{3}\right)\:{is}\:{rotated}\:{about}\:{the}\: \\ $$$${x}.{axis}.{find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\:{generated}.{Leave}\:{your} \\ $$$${answer}\:{in}\:{terms}\:{of}\:\pi. \\ $$ Commented by mr W last updated on…