Question Number 112844 by bemath last updated on 10/Sep/20 $$\:\mathrm{Find}\:\mathrm{general}\:\mathrm{solution} \\ $$$$\left(\mathrm{1}\right)\left(\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{1}+\mathrm{y}}\right)\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{cos}\:\mathrm{x} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{X}\:=\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{\mathrm{11}}\right)+\mathrm{cot}^{−\mathrm{1}} \left(\frac{\mathrm{24}}{\mathrm{7}}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right) \\ $$$$\:\:\mathrm{find}\:\mathrm{X}\:. \\ $$ Commented by bemath last…
Question Number 112840 by bemath last updated on 10/Sep/20 $$\mathrm{solve}\:\mathrm{y}''−\mathrm{y}'+\mathrm{e}^{\mathrm{2x}} \mathrm{y}\:=\:\mathrm{0} \\ $$ Answered by john santu last updated on 10/Sep/20 $$\:{solve}\:{y}''−{y}'\:+{e}^{\mathrm{2}{x}} \:{y}\:=\:\mathrm{0}. \\ $$$$\:{substitute}\:{u}\:=\:{e}^{{x}}…
Question Number 46972 by 23kpratik last updated on 03/Nov/18 $$\boldsymbol{{let}}\:{m},{n}\:{denote}\:{any}\:{two}\:{possitive}\:{relative}\:{prime}\:{integers},{then}\:{prove}\:{that}\phi\left({mn}\right)=\phi\left({m}\right)\centerdot\phi\left({n}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 112456 by bobhans last updated on 08/Sep/20 $$\mathrm{solve}\:\frac{\mathrm{dy}}{\mathrm{dx}}−\frac{\mathrm{4y}}{\mathrm{x}}\:=\:\mathrm{1}+\frac{\mathrm{2}}{\mathrm{x}} \\ $$ Answered by john santu last updated on 08/Sep/20 $${let}\:{u}\:=\:{yx}^{−\mathrm{4}} \:\rightarrow\frac{{du}}{{dx}}\:=\:−\mathrm{4}{yx}^{−\mathrm{5}} +{x}^{−\mathrm{4}} \:\frac{{dy}}{{dx}} \\…
Question Number 46694 by MJS last updated on 30/Oct/18 $$\left({y}''{y}−\left({y}'\right)^{\mathrm{2}} \right)\mathrm{e}^{\frac{{y}'}{{y}}} ={y}^{\mathrm{2}} \\ $$$$\mathrm{not}\:\mathrm{sure}\:\mathrm{if}\:\mathrm{it}'\mathrm{s}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{at}\:\mathrm{all}… \\ $$ Answered by ajfour last updated on 30/Oct/18 $$\mathrm{ln}\:\left[{y}''{y}−\left({y}'\right)^{\mathrm{2}} \right]+\frac{{y}'}{{y}}=\mathrm{2ln}\:{y}…
Question Number 46542 by Umar last updated on 28/Oct/18 $${pls}\:{help}\: \\ $$$$\:\boldsymbol{{Find}}\:\boldsymbol{{L}}\left({cos}^{\mathrm{2}} {t}\right) \\ $$ Commented by Umar last updated on 28/Oct/18 $${Laplace}\:{transform} \\ $$…
Question Number 111330 by bemath last updated on 03/Sep/20 $$\:\:\sqrt{\mathrm{bemath}} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{x}}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\frac{\mathrm{1}}{\mathrm{y}}\:=\:\frac{\mathrm{1}}{\mathrm{y}^{\mathrm{2}} \:\mathrm{ln}\:\left(\mathrm{x}\right)} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 111069 by Dwaipayan Shikari last updated on 01/Sep/20 $$\theta''\left({t}\right)+\frac{{g}}{{l}}{sin}\theta=\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 175827 by Engr_Jidda last updated on 07/Sep/22 Commented by Engr_Jidda last updated on 07/Sep/22 $${help}\:{me}\:{solve}\:{the}\:{DE} \\ $$ Commented by TheHoneyCat last updated on…
Question Number 175734 by Engr_Jidda last updated on 05/Sep/22 $${form}\:{a}\:{differential}\:{equation}\:{from}\:{the}\:{following} \\ $$$$\left.\mathrm{1}\right)\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{ax}+\mathrm{1}=\mathrm{0}\:\:{a}={constant} \\ $$$$\left.\mathrm{2}\right)\:{y}={A}\varrho^{\mathrm{3}{x}} +{B}\varrho^{−\mathrm{2}{x}} \\ $$ Terms of Service Privacy Policy Contact:…