Menu Close

Category: Differential Equation

y-W-

Question Number 207991 by efronzo1 last updated on 02/Jun/24 $$\:\:\:\:\:\mathrm{y}\:\underline{\underbrace{\mathcal{W}}} \\ $$ Answered by mr W last updated on 02/Jun/24 $${particular}\:{solution}: \\ $$$${y}={A}\:\mathrm{sin}\:{x}+{B}\:\mathrm{cos}\:{x} \\ $$$${y}'={A}\:\mathrm{cos}\:{x}−{B}\:\mathrm{sin}\:{x}…

solve-for-y-1-y-1-y-1-

Question Number 207317 by mr W last updated on 11/May/24 $${solve}\:{for}\:{y} \\ $$$$\frac{\mathrm{1}}{{y}'}+\frac{\mathrm{1}}{{y}''}=\mathrm{1} \\ $$ Answered by Berbere last updated on 11/May/24 $${y}'={z} \\ $$$$\frac{\mathrm{1}}{{z}}+\frac{\mathrm{1}}{{z}'}=\mathrm{1}\Rightarrow{z}'=\frac{{z}}{{z}−\mathrm{1}}\Rightarrow\left(\frac{{z}−\mathrm{1}}{{z}}\right){dz}={dx}…

Question-206616

Question Number 206616 by universe last updated on 20/Apr/24 Answered by aleks041103 last updated on 21/Apr/24 $${e}^{\mathrm{3}{x}} \:{is}\:{increasing}\:{and}\:{continuous}\:{for}\:{x}>\mathrm{0} \\ $$$${ln}\left({x}\right)\:{is}\:{incr}.\:{and}\:{cont}.\:{for}\:{x}>\mathrm{0} \\ $$$$\Rightarrow{f}\left({x}\right)\:{is}\:{incr}.\:{and}\:{cont}.\:{for}\:{x}>\mathrm{0} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\:{f}\left({x}\right)\rightarrow−\infty…

let-d-2-y-dx-2-p-x-dy-dx-q-x-y-0-x-R-where-p-x-and-q-x-are-continuous-function-if-y-1-sinx-2cosx-and-y-2-2sinx-cosx-are-L-I-linearly-independent-solution-then-

Question Number 206142 by universe last updated on 07/Apr/24 $$\:\:\:\:\mathrm{let}\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+{p}\left({x}\right)\frac{{dy}}{{dx}}+{q}\left({x}\right){y}=\mathrm{0}\:,\:{x}\in\mathbb{R}\:\mathrm{where}\: \\ $$$$\:\:\:\:{p}\left({x}\right)\:\mathrm{and}\:{q}\left({x}\right)\:\mathrm{are}\:\mathrm{continuous}\:\mathrm{function}\:\mathrm{if} \\ $$$$\:\:\:\:{y}_{\mathrm{1}} =\:\mathrm{sin}{x}−\mathrm{2cos}{x}\:{and}\:{y}_{\mathrm{2}} \:=\:\mathrm{2sin}{x}\:+\mathrm{cos}{x} \\ $$$$\:\:\:\:\mathrm{are}\:{L}.{I}\:\left(\mathrm{linearly}\:\mathrm{independent}\right)\:\mathrm{solution} \\ $$$$\:\:\:\:\:\mathrm{then}\:\:\mid\mathrm{4}{p}\left(\mathrm{0}\right)+\mathrm{2}{q}\left(\mathrm{1}\right)\mid\:=\:?\:\:\: \\ $$ Answered…

Let-f-W-be-a-function-of-vector-W-R-N-i-e-f-W-1-1-e-W-T-x-Determine-the-first-derivative-and-matrix-of-second-derivatives-of-f-with-respect-to-W-

Question Number 203898 by necx122 last updated on 02/Feb/24 $${Let}\:{f}\left({W}\right)\:{be}\:{a}\:{function}\:{of}\:{vector}\:{W}\:\in\: {R}^{{N}} , \\ $$$${i}.{e}.\:{f}\left({W}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}\:+\:{e}^{−{W}^{{T}} {x}} } \\ $$$${Determine}\:{the}\:{first}\:{derivative}\:{and} \\ $$$${matrix}\:{of}\:{second}\:{derivatives}\:{of}\:{f}\:{with} \\ $$$${respect}\:{to}\:{W} \\ $$$$ \\…

Question-203694

Question Number 203694 by Numsey last updated on 26/Jan/24 Answered by Calculusboy last updated on 26/Jan/24 $$\boldsymbol{{Solution}}:\:\boldsymbol{{by}}\:\boldsymbol{{sub}}\:\boldsymbol{{directly}},\boldsymbol{{we}}\:\boldsymbol{{get}}\:\frac{\mathrm{0}}{\mathrm{0}}\left(\boldsymbol{{indeterminant}}\right) \\ $$$$\boldsymbol{{let}}\:\boldsymbol{\Delta}=\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\frac{\left(\mathrm{1}+\boldsymbol{{x}}\right)^{\mathrm{5}} }{\boldsymbol{{x}}^{\mathrm{2}} }−\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {\boldsymbol{{m}}}\frac{\boldsymbol{{e}}^{\mathrm{5}\boldsymbol{{x}}} }{\boldsymbol{{x}}^{\mathrm{2}} }+\boldsymbol{{li}}\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}}…