Menu Close

Category: Differential Equation

d-2-dx-2-2x-d-dx-2n-H-n-x-0-Determine-the-first-4-polynomials-of-Hermite-H-n-

Question Number 108022 by Ar Brandon last updated on 13/Aug/20 $$\left(\frac{\mathrm{d}^{\mathrm{2}} }{\mathrm{dx}^{\mathrm{2}} }−\mathrm{2x}\frac{\mathrm{d}}{\mathrm{dx}}+\mathrm{2n}\right)\mathrm{H}_{\mathrm{n}} \left(\mathrm{x}\right)=\mathrm{0} \\ $$$$\mathrm{Determine}\:\mathrm{the}\:\mathrm{first}-\mathrm{4}\:\mathrm{polynomials}\:\mathrm{of}\:\mathrm{Hermite}\left(\mathrm{H}_{\mathrm{n}} \right) \\ $$ Terms of Service Privacy Policy Contact:…

i-x-3-dy-dx-y-2-x-2-y-2x-4-0-ii-dy-dx-2-y-y-2-iii-2cos-x-dy-dx-2cos-2-x-sin-2-x-y-2-y-0-1-

Question Number 108018 by Ar Brandon last updated on 13/Aug/20 $$\mathrm{i}.\:\:\mathrm{x}^{\mathrm{3}} \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y}^{\mathrm{2}} +\mathrm{x}^{\mathrm{2}} \mathrm{y}+\mathrm{2x}^{\mathrm{4}} =\mathrm{0} \\ $$$$\mathrm{ii}.\:\:\frac{\mathrm{dy}}{\mathrm{dx}}=−\mathrm{2}−\mathrm{y}+\mathrm{y}^{\mathrm{2}} \\ $$$$\mathrm{iii}.\:\:\mathrm{2cos}\left(\mathrm{x}\right)\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{2cos}^{\mathrm{2}} \left(\mathrm{x}\right)−\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{y}^{\mathrm{2}} \:;\:\mathrm{y}\left(\mathrm{0}\right)=−\mathrm{1} \\ $$ Answered…

1-x-t-x-t-tcos-2t-1-t-2-sin-2t-2-x-t-x-t-t-2-cos-2t-

Question Number 108005 by Ar Brandon last updated on 13/Aug/20 $$\mathrm{1}.\:\:\mathrm{x}''\left(\mathrm{t}\right)+\mathrm{x}\left(\mathrm{t}\right)=\mathrm{tcos}\left(\mathrm{2t}\right)+\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\mathrm{sin}\left(\mathrm{2t}\right) \\ $$$$\mathrm{2}.\:\:\mathrm{x}''\left(\mathrm{t}\right)+\mathrm{x}\left(\mathrm{t}\right)=\mathrm{t}^{\mathrm{2}} \mathrm{cos}\left(\mathrm{2t}\right) \\ $$ Answered by mathmax by abdo last updated on…

Solve-the-differential-equation-x-t-2x-t-x-t-1-t-using-the-method-of-variation-of-parameters-

Question Number 107995 by Ar Brandon last updated on 13/Aug/20 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation}; \\ $$$$\mathrm{x}''\left(\mathrm{t}\right)+\mathrm{2x}'\left(\mathrm{t}\right)+\mathrm{x}\left(\mathrm{t}\right)=\mathrm{1}+\mathrm{t} \\ $$$$\left(\mathrm{using}\:\mathrm{the}\:\mathrm{method}\:\mathrm{of}\:\mathrm{variation}\:\mathrm{of}\:\mathrm{parameters}\right) \\ $$ Answered by Ar Brandon last updated on 13/Aug/20…

Determine-all-possible-solutions-to-the-equation-1-t-3-x-t-t-2-x-t-t-x-t-2-0-

Question Number 107727 by Ar Brandon last updated on 12/Aug/20 $$\mathrm{Determine}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{solutions}\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation}\:; \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}+\mathrm{t}^{\mathrm{3}} \right){x}'\left(\mathrm{t}\right)+\mathrm{t}^{\mathrm{2}} {x}\left(\mathrm{t}\right)+\mathrm{t}\left({x}\left(\mathrm{t}\right)\right)^{\mathrm{2}} =\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com