Question Number 170116 by ali009 last updated on 16/May/22 $${solve}\:{the}\:{D}.{E}. \\ $$$$\left({x}+\mathrm{2}{y}−\mathrm{4}\right){dx}+\left(\mathrm{2}{x}+{y}−\mathrm{5}\right){dy}=\mathrm{0} \\ $$ Commented by mr W last updated on 17/May/22 $${see}\:{Q}\mathrm{169558} \\ $$…
Question Number 38876 by tawa tawa last updated on 30/Jun/18 $$\mathrm{solve}:\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} }\:\:+\:\:\mathrm{2x}\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\:+\:\mathrm{5y}\:=\:\mathrm{0} \\ $$ Commented by tanmay.chaudhury50@gmail.com last updated on 01/Jul/18 $${it}\:{is}\:{realy}\:{very}\:{good}\:{problem}…{in}\:{search}..{and} \\ $$$${finding}\:{way}\:{to}\:{solve}\:{it}……
Question Number 169913 by ali009 last updated on 12/May/22 $${solve}\:{the}\:{D}.{E} \\ $$$${dx}+\left(−{sin}\left({y}\right)+\frac{{x}}{{y}}\right){dy}=\mathrm{0} \\ $$ Commented by cortano1 last updated on 12/May/22 $$\:\mathrm{sin}\:{y}\:{dy}\:−\frac{{x}}{{y}}\:{dy}\:=\:{dx}\: \\ $$$$\:{y}\:\mathrm{sin}\:{y}\:{dy}\:=\:{x}\:{dy}\:+{y}\:{dx}\: \\…
Question Number 104357 by bemath last updated on 21/Jul/20 $$\left({x}+{y}+\mathrm{1}\right)\:\frac{{dy}}{{dx}}\:=\:\mathrm{1}\: \\ $$ Answered by john santu last updated on 21/Jul/20 $${let}\:{z}\:=\:{x}+{y}+\mathrm{1} \\ $$$$\frac{{dz}}{{dx}}\:=\:\mathrm{1}+\:\frac{{dy}}{{dx}}\:\Rightarrow\frac{{dy}}{{dx}}\:=\:\frac{{dz}}{{dx}}−\mathrm{1} \\ $$$$\left(\rightarrow\right)\:{z}.\left(\frac{{dz}}{{dx}}−\mathrm{1}\right)\:=\:\mathrm{1}\:…
Question Number 38802 by tawa tawa last updated on 30/Jun/18 $$\mathrm{solve}:\:\:\:\mathrm{y}''\left(\mathrm{1}\:+\:\mathrm{4x}^{\mathrm{2}} \right)\:−\:\mathrm{8y}\:=\:\mathrm{0} \\ $$ Answered by MrW3 last updated on 30/Jun/18 $${y}={ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${y}'=\mathrm{2}{ax}+{b}…
Question Number 104240 by bemath last updated on 20/Jul/20 $$\frac{{dy}}{{dx}}\:=\:\mathrm{1}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\left({xy}\right)^{\mathrm{2}} \\ $$ Commented by bemath last updated on 20/Jul/20 $${thank}\:{you}\:{all}.\:{correct} \\ $$ Answered…
Question Number 104051 by bemath last updated on 19/Jul/20 $$\left({x}^{\mathrm{2}} −\mathrm{1}\right)\:\frac{{dy}}{{dx}}\:+\:\mathrm{2}{y}\:=\:\left({x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$ Answered by bramlex last updated on 19/Jul/20 Commented by bramlex last updated…
Question Number 169558 by greougoury555 last updated on 03/May/22 $$\:\:\:\:\:\:\:\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{2}{x}−{y}+\mathrm{1}}{{x}−\mathrm{4}{y}+\mathrm{3}}\:\:\: \\ $$ Answered by ali009 last updated on 03/May/22 $${a}\mathrm{1}=\mathrm{2}\:\:{a}\mathrm{2}=\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}\mathrm{1}/{a}\mathrm{2}=\mathrm{2} \\ $$$${b}\mathrm{1}=−\mathrm{1}\:\:{b}\mathrm{2}=−\mathrm{4}\:\:\:\:\:\:\:\:\:\:\:\:{b}\mathrm{1}/{b}\mathrm{2}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${so} \\…
Question Number 103958 by bemath last updated on 18/Jul/20 $${what}\:{is}\:{integrating}\:{factor} \\ $$$${of}\:\left({xy}^{\mathrm{2}} −{y}\right)\:{dx}\:−\:{x}\:{dy}\:=\:\mathrm{0} \\ $$ Answered by bramlex last updated on 18/Jul/20 $$\left({xy}^{\mathrm{2}} −{y}\right)\:{dx}\:=\:{x}\:{dy}\: \\…
Question Number 103931 by bemath last updated on 18/Jul/20 $$\left({y}^{\mathrm{2}} +\mathrm{2}\right)\:{dx}\:=\:\left({xy}+\mathrm{2}{y}+{y}^{\mathrm{3}} \right)\:{dy} \\ $$ Answered by bobhans last updated on 18/Jul/20 $$\frac{{dy}}{{dx}}\:=\:\frac{{y}^{\mathrm{2}} +\mathrm{2}}{{y}\left({x}+\mathrm{2}+{y}^{\mathrm{2}} \right)} \\…