Question Number 169155 by Mastermind last updated on 27/Apr/22 $$\left(\mathrm{3}\right)\:\:{Consider}\:{the}\:{boundary}−{value}\: \\ $$$${problem}\:{y}''+\mathrm{2}{y}'+\mathrm{2}{y}=\mathrm{0},\:{y}\left({a}\right)={c}, \\ $$$${y}\left({b}\right)={d}.\:\left({i}\right)\:{if}\:{this}\:{problem}\:{has}\:{a}\: \\ $$$${unique}\:{solution},\:{how}\:{are}\:{a}\:{and}\:{b}\: \\ $$$${related}?\:\left({ii}\right)\:{if}\:{this}\:{problem}\:{has}\:{no} \\ $$$${solution},\:{how}\:{are}\:{a},{b},{c}\:{and}\:{d}\:{related}? \\ $$ Terms of Service…
Question Number 103597 by jimi last updated on 16/Jul/20 $$\boldsymbol{{pls}}\:\boldsymbol{{help}}\:\boldsymbol{{solve}}\:\boldsymbol{{this}}\:\boldsymbol{{differential}}\:\boldsymbol{{equation}} \\ $$$$\left(\mathrm{3}\boldsymbol{{x}}^{\mathrm{2}} \mathrm{sin}\:\left(\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)\:+\:\boldsymbol{{y}}\right)\boldsymbol{{dx}}\:=\:\boldsymbol{{xcos}}\left(\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)\:−\boldsymbol{{xdy}} \\ $$ Commented by OlafThorendsen last updated on 16/Jul/20 $$\mathrm{something}\:\mathrm{is}\:\mathrm{missing}\:\mathrm{after}\:{x}\mathrm{cos}\frac{\mathrm{1}}{{x}}\:? \\ $$…
Question Number 103553 by byaw last updated on 15/Jul/20 Answered by mathmax by abdo last updated on 16/Jul/20 $$\mathrm{2y}^{''} −\mathrm{4y}^{'} −\mathrm{6y}\:=\mathrm{0}\:\Rightarrow\mathrm{y}^{''} −\mathrm{2y}^{'} \:−\mathrm{3y}\:=\mathrm{0} \\ $$$$\rightarrow\mathrm{r}^{\mathrm{2}}…
Question Number 169053 by Mastermind last updated on 23/Apr/22 $${Solve}\:{the}\:{ODE}\: \\ $$$${y}'\:+\:\mathrm{2}{xy}\:=\:{xe}^{−{x}^{\mathrm{2}} } ,\:{with}\:{y}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$ \\ $$$${Mastermind} \\ $$ Answered by haladu last updated…
Question Number 169051 by Mastermind last updated on 23/Apr/22 $${Solve}\:{the}\:{ODE} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{2}\right){y}'\:+\:{xy}\:=\:\mathrm{0},\:{with}\:{y}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$$ \\ $$$${Mastermind} \\ $$ Commented by haladu last updated on…
Question Number 169050 by Mastermind last updated on 23/Apr/22 $${Solve}\:{the}\:{ODE} \\ $$$${y}'\:+\:{xy}\:=\:{x}^{\mathrm{2}} ,\:{with}\:{y}\left(\mathrm{0}\right)=\mathrm{2} \\ $$$$ \\ $$$${Mastermind} \\ $$ Answered by Mathspace last updated on…
Question Number 103483 by bemath last updated on 15/Jul/20 $${y}^{\mathrm{2}} −{u}\left({u}+{y}\right).\:\frac{{dy}}{{du}}\:=\:\mathrm{0} \\ $$ Answered by Dwaipayan Shikari last updated on 15/Jul/20 $${y}^{\mathrm{2}} =\frac{{dy}}{{du}}.{u}\left({u}+{y}\right) \\ $$$${y}^{\mathrm{2}}…
Question Number 103468 by bemath last updated on 15/Jul/20 $$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{2}\:\frac{{dy}}{{dx}}\:+\mathrm{2}{y}\:=\:\mathrm{cos}\:\mathrm{4}{x}? \\ $$$${by}\:{UC}\:{method}\: \\ $$ Answered by bramlex last updated on 15/Jul/20 $$\mathrm{Homogenous}\:\mathrm{solution} \\…
Question Number 37913 by gunawan last updated on 19/Jun/18 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{diferential}\:\mathrm{equatuion} \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{2}{x}+{y}+\mathrm{1}}{{x}−\mathrm{2}{y}+\mathrm{3}}\: \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18 $${let}\:{x}={X}+{h}\:\: \\ $$$${y}={Y}+{k} \\…
Question Number 103377 by Ar Brandon last updated on 14/Jul/20 $$\mathrm{y}''\left(\mathrm{x}\right)+\frac{\mathrm{2x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{y}'\left(\mathrm{x}\right)+\left(\mathrm{2}−\mathrm{x}^{\mathrm{2}} \right)\mathrm{y}\left(\mathrm{x}\right)=\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com