Question Number 94847 by i jagooll last updated on 21/May/20 Answered by john santu last updated on 21/May/20 $$\mathrm{auxilarry}\:\mathrm{equation}\: \\ $$$$\lambda^{\mathrm{3}} −\lambda^{\mathrm{2}} +\lambda−\mathrm{1}\:=\:\mathrm{0}\: \\ $$$$\left(\lambda−\mathrm{1}\right)\left(\lambda^{\mathrm{2}}…
Question Number 29275 by sorour87 last updated on 06/Feb/18 $${x}\left(\mathrm{1}−\mathrm{2}{x}\mathrm{ln}\:{x}\right){y}^{\left(\mathrm{2}\right)} +\left(\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} \mathrm{ln}\:{x}\right){y}^{\left(\mathrm{1}\right)} −\left(\mathrm{2}+\mathrm{4}{x}\right){y}=\mathrm{0} \\ $$$${y}_{\mathrm{1}} =\mathrm{ln}\:{x} \\ $$$${the}\:{public}\:{answer}? \\ $$ Terms of Service Privacy Policy…
Question Number 94797 by i jagooll last updated on 21/May/20 Answered by john santu last updated on 21/May/20 Commented by i jagooll last updated on…
Question Number 94698 by i jagooll last updated on 20/May/20 Answered by john santu last updated on 20/May/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 94622 by i jagooll last updated on 20/May/20 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 28953 by Ruchinna1 last updated on 02/Feb/18 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 28954 by Ruchinna1 last updated on 02/Feb/18 $${please}\:{solve}\:\mathrm{4},\mathrm{5},\mathrm{6} \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 94328 by i jagooll last updated on 18/May/20 $$\mathrm{y}'\:+\:\mathrm{xy}\:=\:\mathrm{x}\: \\ $$ Answered by i jagooll last updated on 18/May/20 Commented by i jagooll…
Question Number 94239 by i jagooll last updated on 17/May/20 $$\mathrm{x}^{\mathrm{2}} \:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{xy}+\mathrm{y}^{\mathrm{2}} \\ $$ Answered by i jagooll last updated on 17/May/20 Commented by…
Question Number 28468 by tawa tawa last updated on 26/Jan/18 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{for}\:\mathrm{all}\:\mathrm{values}\:\mathrm{of}\:\mathrm{u},\:\mathrm{the}\:\mathrm{point}\:\left[\mathrm{a}\:\mathrm{cosh}\left(\mathrm{u}\right)\:,\:\:\mathrm{b}\:\mathrm{sinh}\left(\mathrm{u}\right)\right]\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\: \\ $$$$\mathrm{hyperbola}\:\mathrm{whose}\:\mathrm{equation}\:\mathrm{is}.\:\:\:\:\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }\:−\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }\:=\:\mathrm{1} \\ $$$$\mathrm{And}\:\mathrm{that}\:\mathrm{the}\:\mathrm{tangent}\:\mathrm{at}\:\mathrm{that}\:\mathrm{point}\:\mathrm{is}\::\:\:\:\frac{\mathrm{x}}{\mathrm{a}}\:\mathrm{cosh}\left(\mathrm{u}\right)\:\:−\:\:\frac{\mathrm{y}}{\mathrm{b}}\:\mathrm{sinh}\left(\mathrm{u}\right) \\ $$ Terms of Service Privacy…