Menu Close

Category: Differential Equation

A-car-is-moving-along-a-straight-road-level-when-the-driver-see-a-boy-crossing-the-road-1-5m-when-the-driver-immediately-applies-the-brakes-which-produces-constant-retardation-in-the-first-second-A

Question Number 156395 by alcohol last updated on 10/Oct/21 $${A}\:{car}\:{is}\:{moving}\:{along}\:{a}\:{straight}\:{road}\:{level}\:{when}\: \\ $$$${the}\:{driver}\:{see}\:{a}\:{boy}\:{crossing}\:{the}\:{road}\:\mathrm{1}.\mathrm{5}{m}\:{when}\:{the}\:{driver} \\ $$$${immediately}\:{applies}\:{the}\:{brakes}\:{which}\:{produces} \\ $$$$\:{constant}\:{retardation}\:{in}\:{the}\:{first}\:{second}.\:{After}\:{applying}\:{the}\:{brakes} \\ $$$${the}\:{car}\:{travels}\:\mathrm{25}{m}\:{and}\:{in}\:{the}\:{next}\:{second}\:{it} \\ $$$${traveles}\:\mathrm{15}{m}.\: \\ $$$$\left.{i}\right)\:{find}\:{the}\:{retardation}\:{in}\:{m}/{s}^{\mathrm{2}} \\ $$$$\left.{ii}\right)\:{show}\:{that}\:{the}\:{car}\:{comes}\:{to}\:{rest}\:{at}\: \\…

dy-dx-a-y-x-1-1-x-

Question Number 90863 by ajfour last updated on 26/Apr/20 $$\frac{{dy}}{{dx}}−{a}\left(\frac{{y}}{{x}}\right)=\mathrm{1}+\frac{\mathrm{1}}{{x}} \\ $$ Answered by mr W last updated on 26/Apr/20 $${p}\left({x}\right)=−\frac{{a}}{{x}} \\ $$$$\int{p}\left({x}\right){dx}=−\int\frac{{a}}{{x}}{dx}=−{a}\mathrm{ln}\:{x}=\mathrm{ln}\:{x}^{−{a}} \\ $$$${u}\left({x}\right)={e}^{\int{p}\left({x}\right){dx}}…

x-sin-y-x-y-cos-y-x-dx-x-cos-y-x-dy-0-

Question Number 155965 by john_santu last updated on 06/Oct/21 $$\left({x}\:\mathrm{sin}\:\frac{{y}}{{x}}−{y}\:\mathrm{cos}\:\frac{{y}}{{x}}\right){dx}+{x}\:\mathrm{cos}\:\frac{{y}}{{x}}\:{dy}=\mathrm{0} \\ $$ Answered by mindispower last updated on 07/Oct/21 $$\left({tg}\left(\frac{{y}}{{x}}\right)−\frac{{y}}{{x}}\right){dx}+{dy}=\mathrm{0} \\ $$$$\frac{{y}}{{x}}={u} \\ $$$${dy}={xdu}+{udx} \\…

3x-2-9xy-5y-2-dx-6x-2-4xy-dy-

Question Number 90394 by jagoll last updated on 23/Apr/20 $$\left(\mathrm{3x}^{\mathrm{2}} +\mathrm{9xy}+\mathrm{5y}^{\mathrm{2}} \right)\mathrm{dx}\:=\:\left(\mathrm{6x}^{\mathrm{2}} +\mathrm{4xy}\right)\mathrm{dy} \\ $$ Commented by john santu last updated on 23/Apr/20 $$\left(\mathrm{3}+\mathrm{9}\left(\frac{{y}}{{x}}\right)+\mathrm{5}\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} \right)\:=\:\left(\mathrm{6}+\mathrm{4}\left(\frac{{y}}{{x}}\right)\right)\:{dy}…