Menu Close

Category: Differential Equation

dx-1-2xtan-y-dy-

Question Number 89748 by jagoll last updated on 19/Apr/20 $$\mathrm{dx}\:=\:\left(\mathrm{1}+\mathrm{2xtan}\:\mathrm{y}\right)\:\mathrm{dy}\: \\ $$ Commented by mr W last updated on 19/Apr/20 $$\frac{{dx}}{{dy}}−\left(\mathrm{2}\:\mathrm{tan}\:{y}\right)\:{x}=\mathrm{1} \\ $$$$−\int\mathrm{2}\:\mathrm{tan}\:{y}\:{dy}=\mathrm{2}\int\frac{{d}\:\left(\mathrm{cos}\:{y}\right)}{\mathrm{cos}\:{y}}=\mathrm{2ln}\:\left(\mathrm{cos}\:{y}\right)=\mathrm{ln}\:\mathrm{cos}^{\mathrm{2}} \:{y} \\…

Q1-find-tow-power-series-solutions-of-the-given-D-E-about-x-0-y-2xy-y-0-Q2-use-the-power-series-method-to-solve-the-given-intial-value-problem-y-2xy-8y-0-y-0-3y-0-0-

Question Number 89624 by M±th+et£s last updated on 18/Apr/20 $$\left.{Q}\mathrm{1}\right){find}\:{tow}\:{power}\:{series}\:{solutions}\:{of}\:{the}\: \\ $$$${given}\:{D}.{E}\:{about}\:{x}=\mathrm{0} \\ $$$${y}^{''} −\mathrm{2}{xy}^{'} +{y}=\mathrm{0} \\ $$$$ \\ $$$$\left.{Q}\mathrm{2}\right){use}\:{the}\:{power}\:{series}\:{method}\:\:{to}\:{solve}\:{the} \\ $$$${given}\:{intial}\:{value}\:{problem} \\ $$$${y}^{''} −\mathrm{2}{xy}^{'}…

solve-the-following-diffirntial-equation-1-2x-y-dx-x-y-dy-0-2-3x-y-dx-x-y-dy-0-3-cos-x-y-dx-2y-x-dy-0-

Question Number 89243 by M±th+et£s last updated on 16/Apr/20 $${solve}\:{the}\:{following}\:{diffirntial}\:{equation} \\ $$$$\left.\mathrm{1}\right)\left(\mathrm{2}{x}+{y}\right){dx}+\left({x}+{y}\right){dy}=\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\left(\mathrm{3}{x}−{y}\right){dx}−\left({x}−{y}\right){dy}=\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\:\left({cos}\left({x}\right)+{y}\right){dx}\:+\:\left(\mathrm{2}{y}+{x}\right){dy}=\mathrm{0} \\ $$ Answered by TANMAY PANACEA. last updated on…

2-dy-dx-y-x-y-x-2-

Question Number 89205 by jagoll last updated on 16/Apr/20 $$\mathrm{2}\:\frac{{dy}}{{dx}}\:=\:\frac{{y}}{{x}}\:+\:\left(\frac{{y}}{{x}}\right)^{\mathrm{2}} \\ $$ Commented by john santu last updated on 16/Apr/20 $${y}\:=\:{vx}\:\Rightarrow\frac{{dy}}{{dx}}\:=\:{v}\:+\:{x}\:\frac{{dv}}{{dx}} \\ $$$$\mathrm{2}{v}\:+\mathrm{2}{x}\:\frac{{dv}}{{dx}}\:=\:{v}+{v}^{\mathrm{2}} \\ $$$$\mathrm{2}{x}\:\frac{{dv}}{{dx}}\:=\:{v}^{\mathrm{2}}…

If-z-z-2-3x-3y-0-prove-that-2-z-x-2-2-z-y-2-2z-x-1-z-2-x-3-please-help-

Question Number 89178 by necxxx last updated on 15/Apr/20 $${If}\:{z}\left({z}^{\mathrm{2}} +\mathrm{3}{x}\right)+\mathrm{3}{y}=\mathrm{0}\:{prove}\:{that}\: \\ $$$$\frac{\partial^{\mathrm{2}} {z}}{\partial{x}^{\mathrm{2}} }\:+\:\frac{\partial^{\mathrm{2}} {z}}{\partial{y}^{\mathrm{2}} }=\:\frac{\mathrm{2}{z}\left({x}−\mathrm{1}\right)}{\left({z}^{\mathrm{2}} +{x}\right)^{\mathrm{3}} } \\ $$$$ \\ $$$$ \\ $$$${please}\:{help}.…