Menu Close

Category: Differential Equation

ycos-x-2xe-y-dx-sin-x-x-2-e-y-1-dy-0-

Question Number 84477 by jagoll last updated on 13/Mar/20 $$\left(\mathrm{ycos}\:\mathrm{x}+\mathrm{2xe}^{\mathrm{y}} \right)\mathrm{dx}+\left(\mathrm{sin}\:\mathrm{x}+\mathrm{x}^{\mathrm{2}} \mathrm{e}^{\mathrm{y}} −\mathrm{1}\right)\mathrm{dy}=\mathrm{0} \\ $$ Answered by john santu last updated on 13/Mar/20 $$\frac{\partial\mathrm{M}}{\partial\mathrm{y}}\:=\:\mathrm{cos}\:\mathrm{x}+\mathrm{2xe}^{\mathrm{y}} \\…

Solve-x-sin-y-dx-x-2-y-cos-y-dy-0-subject-to-y-1-

Question Number 18800 by tawa tawa last updated on 29/Jul/17 $$\mathrm{Solve}:\:\:\mathrm{x}\:\mathrm{sin}\left(\mathrm{y}\right)\mathrm{dx}\:+\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}\:\mathrm{cos}\left(\mathrm{y}\right)\mathrm{dy}\:=\:\mathrm{0},\:\:\mathrm{subject}\:\mathrm{to}\:\mathrm{y}\left(\mathrm{1}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Solve-the-following-differential-equation-d-2-y-dx-2-x-1-x-2-dy-dx-y-1-x-2-x-1-x-2-

Question Number 84232 by niroj last updated on 10/Mar/20 $$\:\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{following}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}. \\ $$$$\:\:\frac{\boldsymbol{\mathrm{d}}^{\mathrm{2}} \boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{dx}}^{\mathrm{2}} }\:+\:\frac{\boldsymbol{\mathrm{x}}}{\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\:\frac{\boldsymbol{\mathrm{dy}}}{\boldsymbol{\mathrm{dx}}}−\:\frac{\boldsymbol{\mathrm{y}}}{\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }=\:\boldsymbol{\mathrm{x}}\sqrt{\mathrm{1}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} } \\ $$ Commented by mind is power last…

Question-149757

Question Number 149757 by iloveisrael last updated on 07/Aug/21 Commented by amin96 last updated on 07/Aug/21 $${x}\frac{{dy}}{{dx}}+\mathrm{2}{y}=\frac{{sinx}}{{x}}\:\:\:\:\:\:\frac{{dy}}{{dx}}=\frac{\mathrm{sin}\:{x}−\mathrm{2}{xy}}{{x}^{\mathrm{2}} } \\ $$$$\left(\mathrm{sin}\:{x}−\mathrm{2}{xy}\right){dx}+\left(−{x}^{\mathrm{2}} \right){dy}=\mathrm{0} \\ $$$$\frac{\partial{M}}{\partial{y}}=−\mathrm{2}{x}\:\:\:\:\:\:\:\frac{\partial{N}}{\partial{x}}=−\mathrm{2}{x}\:\:\:\:\:\:{M}_{{y}} ={N}_{{x}} \:\:\:…

y-2x-3y-1-2-find-the-solution-

Question Number 84212 by jagoll last updated on 10/Mar/20 $$\mathrm{y}'\:=\:\left(\mathrm{2x}+\mathrm{3y}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{solution}\: \\ $$ Commented by niroj last updated on 10/Mar/20 $$\:\:\frac{\mathrm{dy}}{\mathrm{dx}}=\:\left(\mathrm{2x}+\mathrm{3y}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\:\mathrm{put},\:\:\mathrm{2x}+\mathrm{3y}+\mathrm{1}=\mathrm{v} \\…