Menu Close

Category: Differential Equation

Help-solve-x-2-dy-dx-3-2y-x-

Question Number 15942 by Don sai last updated on 15/Jun/17 $$\mathrm{Help}. \\ $$$$\mathrm{solve}\left(\mathrm{x}+\mathrm{2}\right)\mathrm{dy}/\mathrm{dx}=\mathrm{3}−\mathrm{2y}/\mathrm{x} \\ $$ Answered by mrW1 last updated on 16/Jun/17 $$\left(\mathrm{x}+\mathrm{2}\right)\frac{\mathrm{dy}}{\mathrm{dx}}+\frac{\mathrm{2}}{\mathrm{x}}\mathrm{y}=\mathrm{3} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}+\frac{\mathrm{2}}{\mathrm{x}\left(\mathrm{x}+\mathrm{2}\right)}\mathrm{y}=\frac{\mathrm{3}}{\mathrm{x}+\mathrm{2}}…

dy-dx-2cos-2-x-sin-2-x-y-2-2cos-x-y-0-1-amp-y-1-sin-x-

Question Number 146911 by EDWIN88 last updated on 16/Jul/21 $$\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{2cos}\:^{\mathrm{2}} \mathrm{x}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{y}^{\mathrm{2}} }{\mathrm{2cos}\:\mathrm{x}} \\ $$$$\:\:\:\mathrm{y}\left(\mathrm{0}\right)=−\mathrm{1}\:\&\:\mathrm{y}\left(\mathrm{1}\right)=\mathrm{sin}\:\mathrm{x}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Let-n-2-for-x-0-1-let-consider-A-x-u-R-x-lt-u-n-1-Prove-that-if-a-b-0-1-a-b-A-a-A-b-2-Deduce-x-infA-x-n-

Question Number 81157 by ~blr237~ last updated on 09/Feb/20 $${Let}\:{n}\geqslant\mathrm{2}\:,\:{for}\:\:{x}\in\left[\mathrm{0},\mathrm{1}\right]\:\::\:\:\:{let}\:\:{consider}\:\:{A}\left({x}\right)=\left\{\:{u}\in\mathbb{R}_{+} ^{\ast} \:\backslash\:\:\:{x}<{u}^{{n}} \right\}\: \\ $$$$\left.\mathrm{1}\right){Prove}\:\:{that}\:{if}\:\:\:{a},{b}\in\left[\mathrm{0},\mathrm{1}\right]\:\:\:\:\:\:\:\:\:\:{a}\leqslant{b}\:\Leftrightarrow{A}\left({a}\right)\subseteq{A}\left({b}\right)\:\:\: \\ $$$$\left.\mathrm{2}\right){Deduce}\:\:\:\:\:{x}=\left[{infA}\left({x}\right)\:\right]^{{n}} \:\: \\ $$ Terms of Service Privacy Policy…

Find-the-general-solution-of-the-following-homogeneous-system-of-equation-x-1-x-2-2x-3-0-3x-1-x-2-6x-3-0-2x-1-3x-2-4x-3-0-

Question Number 15233 by tawa tawa last updated on 08/Jun/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{homogeneous}\:\mathrm{system}\:\mathrm{of} \\ $$$$\mathrm{equation}\:\: \\ $$$$\mathrm{x}_{\mathrm{1}} \:+\:\mathrm{x}_{\mathrm{2}} \:−\:\mathrm{2x}_{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$\mathrm{3x}_{\mathrm{1}} \:−\:\mathrm{x}_{\mathrm{2}} \:−\:\mathrm{6x}_{\mathrm{3}} \:=\:\mathrm{0} \\ $$$$−\mathrm{2x}_{\mathrm{1}}…