Question Number 16057 by Dr Kc last updated on 17/Jun/17 $${please}\:{how}\:{can}\:{i}\:{form}\:{a}\:{differential}\:{equation}\:{from} \\ $$$${y}={Ax}\varrho{x} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 16056 by Dr Kc last updated on 17/Jun/17 $${y}={Ax}\hat {\varrho}{x} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 15971 by tawa tawa last updated on 16/Jun/17 Commented by tawa tawa last updated on 16/Jun/17 $$\mathrm{please}\:\mathrm{help}\:\mathrm{with}\:\mathrm{the}\:\mathrm{fourier}\:\mathrm{series}. \\ $$ Terms of Service Privacy…
Question Number 15942 by Don sai last updated on 15/Jun/17 $$\mathrm{Help}. \\ $$$$\mathrm{solve}\left(\mathrm{x}+\mathrm{2}\right)\mathrm{dy}/\mathrm{dx}=\mathrm{3}−\mathrm{2y}/\mathrm{x} \\ $$ Answered by mrW1 last updated on 16/Jun/17 $$\left(\mathrm{x}+\mathrm{2}\right)\frac{\mathrm{dy}}{\mathrm{dx}}+\frac{\mathrm{2}}{\mathrm{x}}\mathrm{y}=\mathrm{3} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}+\frac{\mathrm{2}}{\mathrm{x}\left(\mathrm{x}+\mathrm{2}\right)}\mathrm{y}=\frac{\mathrm{3}}{\mathrm{x}+\mathrm{2}}…
Question Number 15943 by tawa tawa last updated on 15/Jun/17 $$\mathrm{Solve}: \\ $$$$\mathrm{x}\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\mathrm{3y}\:=\:\mathrm{3x}^{\mathrm{x}} \:\mathrm{y}^{\mathrm{2}/\mathrm{3}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 15840 by tawa tawa last updated on 14/Jun/17 $$\mathrm{Solve}\:\mathrm{the}\:\:\mathrm{ODE} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\mathrm{x}^{\mathrm{2}} \mathrm{y}\:=\:\mathrm{x}^{\mathrm{4}} \\ $$$$ \\ $$ Commented by chux last updated on 14/Jun/17…
Question Number 146911 by EDWIN88 last updated on 16/Jul/21 $$\:\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{2cos}\:^{\mathrm{2}} \mathrm{x}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{y}^{\mathrm{2}} }{\mathrm{2cos}\:\mathrm{x}} \\ $$$$\:\:\:\mathrm{y}\left(\mathrm{0}\right)=−\mathrm{1}\:\&\:\mathrm{y}\left(\mathrm{1}\right)=\mathrm{sin}\:\mathrm{x}\: \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 15707 by Joel577 last updated on 13/Jun/17 $${x}^{\mathrm{3}} \:+\:\left({y}\:+\:\mathrm{1}\right)^{\mathrm{2}} \:.\:\frac{{dy}}{{dx}}\:=\:\mathrm{0} \\ $$$$\mathrm{Find}\:{y} \\ $$ Answered by ajfour last updated on 13/Jun/17 $$\:\:\:\:\:\:\:\:\:{x}^{\mathrm{3}} {dx}+\left({y}+\mathrm{1}\right)^{\mathrm{2}}…
Question Number 15706 by Joel577 last updated on 13/Jun/17 $$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:\frac{{dy}}{{dx}}\:−\:\mathrm{6}{y}\:=\:\mathrm{2}\:+\:\mathrm{sin}\:{x} \\ $$$$\mathrm{Find}\:{y} \\ $$ Commented by prakash jain last updated on 13/Jun/17 $$\mathrm{Characteristic}\:\mathrm{equation}…
Question Number 81157 by ~blr237~ last updated on 09/Feb/20 $${Let}\:{n}\geqslant\mathrm{2}\:,\:{for}\:\:{x}\in\left[\mathrm{0},\mathrm{1}\right]\:\::\:\:\:{let}\:\:{consider}\:\:{A}\left({x}\right)=\left\{\:{u}\in\mathbb{R}_{+} ^{\ast} \:\backslash\:\:\:{x}<{u}^{{n}} \right\}\: \\ $$$$\left.\mathrm{1}\right){Prove}\:\:{that}\:{if}\:\:\:{a},{b}\in\left[\mathrm{0},\mathrm{1}\right]\:\:\:\:\:\:\:\:\:\:{a}\leqslant{b}\:\Leftrightarrow{A}\left({a}\right)\subseteq{A}\left({b}\right)\:\:\: \\ $$$$\left.\mathrm{2}\right){Deduce}\:\:\:\:\:{x}=\left[{infA}\left({x}\right)\:\right]^{{n}} \:\: \\ $$ Terms of Service Privacy Policy…