Menu Close

Category: Differential Equation

Question-78105

Question Number 78105 by aliesam last updated on 14/Jan/20 Answered by Kunal12588 last updated on 14/Jan/20 $$\frac{{dy}}{{dx}}+\left({tan}\:{x}\right){y}={sin}\:\mathrm{2}{x} \\ $$$${This}\:{is}\:{a}\:{linear}\:{differential}\:{equation} \\ $$$${differential}\:{equation}\:{of}\:{the}\:{type} \\ $$$$\frac{{dy}}{{dx}}+{Px}={Q}\:\:;\:{P}\:\&\:{Q}\:{are}\:{function}\:{of}\:{x}\:{only} \\ $$$${P}\:=\:{tan}\:{x},\:{Q}\:=\:{sin}\:\mathrm{2}{x}…

Solve-the-differential-equation-dy-dx-4x-2y-3-8x-4y-5-

Question Number 12245 by tawa last updated on 16/Apr/17 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{4x}\:+\:\mathrm{2y}\:−\:\mathrm{3}}{\mathrm{8x}\:−\:\mathrm{4y}\:+\:\mathrm{5}} \\ $$ Answered by mrW1 last updated on 17/Apr/17 $$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{4x}\:+\:\mathrm{2y}\:−\:\mathrm{3}}{\mathrm{8x}\:−\:\mathrm{4y}\:+\:\mathrm{5}} \\ $$$$ \\…

differentiate-each-function-from-first-principle-1-f-x-1-1-x-2-f-x-1-2x-3-3-f-x-sin2x-4-f-x-co2x-

Question Number 11920 by carrot last updated on 05/Apr/17 $${differentiate}\:{each}\:{function}\:{from}\:{first}\:{principle} \\ $$$$\left.\mathrm{1}\right){f}\:\left({x}\right)\:=\:\mathrm{1}+\frac{\mathrm{1}}{{x}} \\ $$$$\left.\mathrm{2}\right){f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{3}}\: \\ $$$$\left.\mathrm{3}\right)\:{f}\left({x}\right)={sin}\mathrm{2}{x} \\ $$$$\left.\mathrm{4}\right){f}\left({x}\right)={co}\mathrm{2}{x} \\ $$$$ \\ $$ Answered by sandy_suhendra…