Question Number 78105 by aliesam last updated on 14/Jan/20 Answered by Kunal12588 last updated on 14/Jan/20 $$\frac{{dy}}{{dx}}+\left({tan}\:{x}\right){y}={sin}\:\mathrm{2}{x} \\ $$$${This}\:{is}\:{a}\:{linear}\:{differential}\:{equation} \\ $$$${differential}\:{equation}\:{of}\:{the}\:{type} \\ $$$$\frac{{dy}}{{dx}}+{Px}={Q}\:\:;\:{P}\:\&\:{Q}\:{are}\:{function}\:{of}\:{x}\:{only} \\ $$$${P}\:=\:{tan}\:{x},\:{Q}\:=\:{sin}\:\mathrm{2}{x}…
Question Number 143446 by gsk2684 last updated on 14/Jun/21 $$\mathrm{find}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of} \\ $$$$\mathrm{differential}\:\mathrm{equation}\: \\ $$$$\mathrm{y}'=\mathrm{y}−\mathrm{xy}^{\mathrm{3}} \mathrm{e}^{−\mathrm{2x}} \\ $$ Answered by gsk2684 last updated on 05/Jul/21 $$\mathrm{solution}\:\mathrm{please}…
Question Number 77859 by jagoll last updated on 11/Jan/20 $${y}\:=\:\mid{x}\mid\:^{\mid{x}\mid} \:\: \\ $$$$\frac{{dy}}{{dx}}\:=\:? \\ $$ Commented by mathmax by abdo last updated on 11/Jan/20 $${y}\left({x}\right)={e}^{\mid{x}\mid{ln}\mid{x}\mid}…
Question Number 12245 by tawa last updated on 16/Apr/17 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{4x}\:+\:\mathrm{2y}\:−\:\mathrm{3}}{\mathrm{8x}\:−\:\mathrm{4y}\:+\:\mathrm{5}} \\ $$ Answered by mrW1 last updated on 17/Apr/17 $$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{4x}\:+\:\mathrm{2y}\:−\:\mathrm{3}}{\mathrm{8x}\:−\:\mathrm{4y}\:+\:\mathrm{5}} \\ $$$$ \\…
Question Number 12228 by tawa last updated on 16/Apr/17 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\frac{\mathrm{2xy}}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} } \\ $$ Answered by mrW1 last updated on 16/Apr/17 $${u}=\frac{{y}}{{x}} \\…
Question Number 77483 by aliesam last updated on 06/Jan/20 $${solve}\: \\ $$$${y}'\:{cos}\left({x}\right)\:+\frac{\mathrm{1}}{\mathrm{2}}\:{y}\:{sin}\left({x}\right)\:=\:{e}^{{x}} \:\sqrt{{sin}\left({x}\right)}\:\: \\ $$ Commented by mathmax by abdo last updated on 06/Jan/20 $$\left.\left({he}\right)\rightarrow{cosx}\right){y}^{'}…
Question Number 11920 by carrot last updated on 05/Apr/17 $${differentiate}\:{each}\:{function}\:{from}\:{first}\:{principle} \\ $$$$\left.\mathrm{1}\right){f}\:\left({x}\right)\:=\:\mathrm{1}+\frac{\mathrm{1}}{{x}} \\ $$$$\left.\mathrm{2}\right){f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}{x}+\mathrm{3}}\: \\ $$$$\left.\mathrm{3}\right)\:{f}\left({x}\right)={sin}\mathrm{2}{x} \\ $$$$\left.\mathrm{4}\right){f}\left({x}\right)={co}\mathrm{2}{x} \\ $$$$ \\ $$ Answered by sandy_suhendra…
Question Number 11597 by tawa last updated on 28/Mar/17 $$\mathrm{y}\:=\:\mathrm{x}^{\mathrm{x}^{\sqrt{\mathrm{x}}} } ,\:\mathrm{find}\:\frac{\mathrm{dy}}{\mathrm{dx}} \\ $$ Answered by sma3l2996 last updated on 28/Mar/17 $${y}={x}^{{e}^{\sqrt{{x}}{ln}\left({x}\right)} } ={e}^{{e}^{\sqrt{{x}}{ln}\left({x}\right)} {ln}\left({x}\right)}…
Question Number 142623 by Engr_Jidda last updated on 03/Jun/21 $${find}\:{the}\:{zero}\:{of}\:{z}^{\mathrm{3}} +\mathrm{729}=\mathrm{0} \\ $$$${z}\in\mathbb{C} \\ $$ Answered by Olaf_Thorendsen last updated on 03/Jun/21 $${z}^{\mathrm{3}} \:=\:−\mathrm{729}\:=\:\mathrm{9}^{\mathrm{3}} {e}^{{i}\pi}…
Question Number 142622 by Engr_Jidda last updated on 03/Jun/21 $${find}\:{z}\:{for}\:{which}\:{f}\left({z}\right)=\frac{{z}}{{sinz}}\:{is}\:{undefined} \\ $$$${where}\:{z}\in\mathbb{C} \\ $$ Answered by MJS_new last updated on 03/Jun/21 $$\mathrm{undefined}\:\mathrm{when}\:\mathrm{sin}\:{z}\:=\mathrm{0}\:\Rightarrow\:{z}={n}\pi\wedge{n}\in\mathbb{Z} \\ $$ Terms…