Question Number 6511 by Yozzii last updated on 30/Jun/16 $${Find}\:{the}\:{function}\:{y}\:{satisfying} \\ $$$${y}'+\frac{{c}_{\mathrm{1}} }{{y}\left({x}−{c}_{\mathrm{2}} \right)^{{n}} }={c}_{\mathrm{3}} \\ $$$${where}\:{n}\in\left(\mathbb{Z}−\left\{\mathrm{0}\right\}\right),\:{c}_{\mathrm{1}} \:{and}\:{c}_{\mathrm{3}} \:{are}\:{nonzero} \\ $$$${constants},\:{and}\:{c}_{\mathrm{2}} \:{is}\:{constant}. \\ $$ Terms…
Question Number 6505 by nburiburu last updated on 29/Jun/16 $${Find}\:{general}\:{solution}\:{for} \\ $$$${y}'\:+{P}\left({x}\right)\centerdot{y}^{\mathrm{2}} ={Q}\left({x}\right) \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 137558 by liberty last updated on 04/Apr/21 $$\left({x}+{y}\right){dx}\:+\:\left({x}+{y}^{\mathrm{2}} \right){dy}\:=\:\mathrm{0}\: \\ $$ Answered by Ñï= last updated on 04/Apr/21 $$\left({x}+{y}\right){dx}+\left({x}+{y}^{\mathrm{2}} \right){dy} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{d}\left({x}^{\mathrm{2}} \right)+{ydx}+{xdy}+\frac{\mathrm{1}}{\mathrm{3}}{d}\left({y}^{\mathrm{3}}…
Question Number 6457 by sanusihammed last updated on 27/Jun/16 $${Solve}. \\ $$$${y}^{''} \:−\:\mathrm{4}{y}'\:+\:\mathrm{4}{y}\:\:=\:\:{sin}\mathrm{2}{x}\: \\ $$ Answered by nburiburu last updated on 27/Jun/16 $${homogeneus}\:{solution}: \\ $$$${r}^{\mathrm{2}}…
Question Number 71983 by device4438043516@gmail.com last updated on 23/May/20 $$ \\ $$ Answered by Henri Boucatchou last updated on 23/Oct/19 $$\boldsymbol{{d}}\left(\boldsymbol{{e}}^{\boldsymbol{{vlnu}}} \right)\:=\:\boldsymbol{{u}}^{\boldsymbol{{v}}} \:\boldsymbol{{d}}\left(\boldsymbol{{vlnu}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\boldsymbol{{u}}^{\boldsymbol{{v}}}…
Question Number 71972 by device4438043516@gmail.com last updated on 23/May/20 $$ \\ $$ Commented by MJS last updated on 23/Oct/19 $$\mathrm{syntax}\:\mathrm{unknown} \\ $$$${u}={u}\left({x}\right) \\ $$$${v}={v}\left({x}\right) \\…
Question Number 6415 by sanusihammed last updated on 26/Jun/16 $${y}^{'} \left({t}\right)\:=\:{C}\:+\:\frac{{v}\left({t}\right){y}\left({t}\right)}{\mathrm{1}\:+\:{v}\left({t}\right){t}} \\ $$$$ \\ $$$${Here},\:{t}\:\:{is}\:{the}\:{variable}\: \\ $$$${y}\left({t}\right)\:{is}\:{the}\:{function} \\ $$$${y}^{'} \left({t}\right)\:{is}\:{its}\:{first}\:{derivative}\: \\ $$$${v}\left({t}\right)\:{is}\:{an}\:{another}\:{function}\:{in}\:{the}\:{same}\:{variable}\:\:{t}\: \\ $$$${C}\:\:{is}\:{a}\:{constant}. \\…
Question Number 6086 by sanusihammed last updated on 12/Jun/16 $${Find}\:{the}\:{solution}\:{of}\:{the}\:{differential}\:{equation}\: \\ $$$$\left({y}\:−\:{x}\:+\:\mathrm{1}\right){dy}\:−\:\left({y}\:+\:{x}\:+\:\mathrm{2}\right){dx}\:=\:\mathrm{0} \\ $$$$ \\ $$ Answered by Yozzii last updated on 12/Jun/16 $${M}\left({x},{y}\right){dx}+{N}\left({x},{y}\right){dy}=\mathrm{0} \\…
Question Number 71570 by TawaTawa last updated on 17/Oct/19 $$\mathrm{Solve}:\:\:\:\:\:\left(\mathrm{2x}\:+\:\mathrm{x}^{\mathrm{2}} \right)\mathrm{y}''\:−\:\mathrm{2}\left(\mathrm{1}\:+\:\mathrm{x}\right)\mathrm{y}'\:+\:\mathrm{2y}\:\:=\:\:\mathrm{0} \\ $$$$\mathrm{Given}\:\:\mathrm{y}\:=\:\mathrm{x}^{\mathrm{2}} \:\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}. \\ $$ Answered by mind is power last updated on 17/Oct/19…
Question Number 5991 by sanusihammed last updated on 08/Jun/16 $${Solve}\:{the}\:{differential}\:{equation}\: \\ $$$$ \\ $$$${cos}^{\mathrm{2}} \left({x}\right)\:\frac{{dy}}{{dx}}\:+\:{y}\:=\:{tan}\left({x}\right) \\ $$ Answered by prakash jain last updated on 09/Jun/16…