Question Number 4625 by Yozzis last updated on 14/Feb/16 $${Solve}\:{the}\:{following}\:{system}\:{of}\:{differential}\: \\ $$$${equations}\:{for}\:{functions}\:{x}\left({t}\right)\:{and}\:{y}\left({t}\right). \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }=\frac{{kx}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }=\frac{{ky}}{\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)^{\mathrm{2}}…
Question Number 4472 by Yozzii last updated on 30/Jan/16 $${Solve}\:{the}\:{following}\:{differential}\:{equation}: \\ $$$$\:\:\:\:\:\:\:\:\left(\mathrm{2}{xy}^{\mathrm{2}} +\frac{{x}}{{y}^{\mathrm{2}} }\right){dx}+\mathrm{4}{x}^{\mathrm{2}} {ydy}=\mathrm{0} \\ $$ Commented by prakash jain last updated on 01/Feb/16…
Question Number 135401 by rs4089 last updated on 12/Mar/21 $${find}\:{integrating}\:{factor}\:{or}\:{this}\:{diff}. \\ $$$${equ}^{{n}} \:{for}\:{which}\:{it}\:{become}\:{exact}\: \\ $$$$\left({x}^{\mathrm{2}} −{xy}−{y}^{\mathrm{2}} \right){dy}+{y}^{\mathrm{2}} {dx}=\mathrm{0} \\ $$ Terms of Service Privacy Policy…
Question Number 135173 by bemath last updated on 11/Mar/21 Answered by john_santu last updated on 11/Mar/21 $${Homogenous}\:{problem} \\ $$$${y}_{{h}} '''−{y}_{{h}} ''−\mathrm{2}{y}_{{h}} '\:=\:\mathrm{0} \\ $$$${let}\:{y}_{{h}} \:=\:{e}^{{mx}}…
Question Number 135061 by liberty last updated on 09/Mar/21 $$ \\ $$How can I solve the differential equation (1+x^2)^2y′′+2x(1+x^2)y′+4y=0 Answered by EDWIN88 last updated on 10/Mar/21…
Question Number 3763 by 123456 last updated on 19/Dec/15 $$\mathrm{tan}{f}=\frac{{df}}{{dx}} \\ $$$${f}=? \\ $$ Commented by Filup last updated on 19/Dec/15 $$\frac{{df}}{{dx}}=\mathrm{tan}\:{f} \\ $$$$\int\mathrm{sec}{f}\:{df}={x}+{c} \\…
Question Number 3709 by Rasheed Soomro last updated on 19/Dec/15 $$\mathcal{W}{hat}\:{is}\:{a}\:{solid}\:{angle}? \\ $$$$\mathcal{H}{ow}\:{is}\:{it}\:{defined}? \\ $$$${Does}\:{the}\:{corner}\:{of}\:{a} \\ $$$${cubic}\:{room}\:{can}\:{be}\:{said} \\ $$$$'\:{right}\:{solid}\:{angle}\:'\:? \\ $$ Answered by 123456 last…
Question Number 3656 by prakash jain last updated on 17/Dec/15 $$\mathrm{Give}\:\mathrm{an}\:\mathrm{example}\:\mathrm{of}\:\mathrm{differential}\:\mathrm{equation}\:\mathrm{which} \\ $$$$\mathrm{has}\:\mathrm{no}\:\mathrm{solutions}. \\ $$ Answered by Filup last updated on 18/Dec/15 $${Weierstrass}\:{function} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{fuction}\:\mathrm{that}\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{at}\:\mathrm{all}…
Question Number 134694 by Engr_Jidda last updated on 06/Mar/21 $$\int{sin}^{\mathrm{4}} {xdx} \\ $$ Answered by john_santu last updated on 06/Mar/21 $$\mathcal{J}\:=\:\int\:\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{2}{x}\right)^{\mathrm{2}} {dx} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\int\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}{x}\right)^{\mathrm{2}} \:{dx}…
Question Number 68946 by ramirez105 last updated on 17/Sep/19 Commented by kaivan.ahmadi last updated on 17/Sep/19 $$\frac{\partial{u}}{\partial{x}}=\left(\mathrm{2}{xy}−{tany}\right)\Rightarrow{u}\left({x},{y}\right)={x}^{\mathrm{2}} {y}−{xtany}+{h}\left({y}\right) \\ $$$$\frac{\partial{u}}{\partial{y}}={x}^{\mathrm{2}} −{xsec}^{\mathrm{2}} {y}={x}^{\mathrm{2}} −{xsec}^{\mathrm{2}} {y}+\frac{{dh}}{{dy}}\Rightarrow\frac{{dh}}{{dy}}=\mathrm{0}\Rightarrow{h}={c}' \\…