Question Number 1898 by 123456 last updated on 22/Oct/15 $$\frac{{df}}{{dt}}=\alpha{f}+\beta{t}+\gamma \\ $$$${f}\left({t}\right)=?? \\ $$ Answered by Yozzy last updated on 22/Oct/15 $$\frac{{df}}{{dt}}=\alpha{f}+\beta{t}+\gamma\:\:\:{where}\:{I}\:{assume}\:{that}\:\alpha,\beta,\gamma\:{are}\:{constants}.\:{This}\:{equation}\:{may}\:{be} \\ $$$${rewritten}\:{as}\:\:\:\:\:\frac{{df}}{{dt}}−\alpha{f}=\beta{t}+\gamma\:\:\left(\ast\right).\:{The}\:{equation}\:{is}\:{a}\:{first}\:{order}\:{linear}\:{non}−{homogeneous} \\…
Question Number 67349 by Joel122 last updated on 26/Aug/19 $$\mathrm{Solve}\:\mathrm{for}\:{y}\left({x}\right) \\ $$$${xy}'\:=\:{y}\:+\:\mathrm{2}{x}^{\mathrm{3}} \mathrm{sin}^{\mathrm{2}} \left(\frac{{y}}{{x}}\right) \\ $$ Answered by mind is power last updated on 26/Aug/19…
find-the-series-solution-of-the-ordinary-differential-equation-y-2-2xy-1-3y-x-2-1-y-0-1-and-y-1-0-2-
Question Number 132881 by Engr_Jidda last updated on 17/Feb/21 $${find}\:{the}\:{series}\:{solution}\:{of} \\ $$$${the}\:{ordinary}\:{differential}\:{equation} \\ $$$${y}^{\mathrm{2}} +\mathrm{2}{xy}^{\mathrm{1}} −\mathrm{3}{y}={x}^{\mathrm{2}} −\mathrm{1} \\ $$$${y}\left(\mathrm{0}\right)=\mathrm{1}\:{and}\:{y}^{\mathrm{1}} \left(\mathrm{0}\right)=\mathrm{2} \\ $$ Terms of Service…
Question Number 67336 by TawaTawa last updated on 25/Aug/19 $$\mathrm{If}\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{e}^{−\mathrm{t}} \:\:\frac{\mathrm{dy}}{\mathrm{dt}}\:\:,\:\:\:\:\:\:\mathrm{find}\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} } \\ $$ Commented by mr W last updated on 26/Aug/19 $${where}\:{did}\:{you}\:{get}\:{this}\:{question}? \\…
Question Number 1743 by 123456 last updated on 12/Sep/15 $${u}'\left({v}−{v}'\right)+{uv}'=\mathrm{0} \\ $$$${u}=? \\ $$ Commented by Rasheed Ahmad last updated on 13/Sep/15 $${u}'\left({v}−{v}'\right)+{uv}'=\mathrm{0} \\ $$$${u}'{v}+{uv}'−{u}'{v}'=\mathrm{0}…
Question Number 1603 by 123456 last updated on 25/Aug/15 $$\frac{{f}\left({x}\right)}{{f}'\left({x}\right)}=\frac{{f}'\left({x}\right)}{{f}\left({x}\right)} \\ $$$${f}\left({x}\right)= \\ $$ Answered by Rasheed Soomro last updated on 28/Aug/15 $$\left[\:{f}\:'\left({x}\right)\:\right]^{\mathrm{2}} =\left[\:{f}\left({x}\right)\:\right]^{\mathrm{2}} \\…
Question Number 1597 by Rasheed Ahmad last updated on 25/Aug/15 $$\int\frac{{f}\left({x}\right)}{{f}\:'\left({x}\right)}{dx}={ln}\:{sec}\:{x}+{c} \\ $$$${f}\left({x}\right)=? \\ $$ Answered by 123456 last updated on 25/Aug/15 $$\int\frac{{y}}{{dy}/{dx}}{dx}=\mathrm{ln}\:\mathrm{sec}\:{x}+{c} \\ $$$$\frac{{d}}{{dx}}\left[\int\frac{{y}}{{dy}/{dx}}{dx}\right]=\frac{{d}}{{dx}}\left[\mathrm{ln}\:\mathrm{sec}\:{x}+{c}\right]…
Question Number 1579 by 123456 last updated on 21/Aug/15 $$\left(\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\right)^{\mathrm{2}} +\frac{{dy}}{{dx}}+{y}=\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 1575 by 112358 last updated on 21/Aug/15 $${Solve}\:{the}\:{following}\:{D}.{E}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} +\mathrm{2}{y}+\mathrm{2}=\mathrm{0}\: \\ $$$${Does}\:\:\left(\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\right)^{\mathrm{2}} +\mathrm{2}{y}+\mathrm{2}=\mathrm{0}\:{have} \\ $$$${any}\:{solutions}\:{other}\:{than} \\ $$$${y}=−\mathrm{1}\:? \\ $$ Commented…
Question Number 132639 by Ahmed1hamouda last updated on 15/Feb/21 Commented by Ahmed1hamouda last updated on 15/Feb/21 $$\mathrm{solve}\:\mathrm{the}\:\mathrm{differential}\:\mathrm{equation} \\ $$ Answered by mathmax by abdo last…