Question Number 130976 by BHOOPENDRA last updated on 31/Jan/21 $${if}\:{U}={f}\left({x},{y},{z}\right){and}\:{z}={f}\left({x},{y}\right){then}\:{find}\: \\ $$$${the}\:{formula}\:\frac{{d}^{\mathrm{2}} {u}}{{dx}^{\mathrm{2}} }\:{in}\:{terms}\:{of}\:{derivetive} \\ $$$${of}\:{F}\:{and}\:{derivative}\:{of}\:{z}\:{respectively}? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 130953 by LYKA last updated on 01/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 130949 by mnjuly1970 last updated on 31/Jan/21 $$\:\:\:\:\:\:\:\:\:…{nice}\:\:{calculus}… \\ $$$$\:\:\:{calculate}:\: \\ $$$$\:\:\:\:\mathrm{I}=\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{S}{i}\left({x}\right)}{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:{dx}\overset{???} {=}\sqrt{\mathrm{8}\pi}\: \\ $$$$\:\:\:\:\:\:\:\mathrm{S}{i}\left({x}\right)=\int_{\mathrm{0}} ^{\:{x}} \frac{{sin}\left({t}\right)}{{t}}{dt} \\ $$ Answered…
Question Number 130918 by bramlexs22 last updated on 30/Jan/21 $$\:\begin{cases}{{y}=\mathrm{sin}\:\theta−\mathrm{cos}\:^{\mathrm{3}} \theta}\\{{x}=\mathrm{cos}\:\theta−\mathrm{sin}\:^{\mathrm{3}} \theta}\end{cases} \\ $$$$\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:=? \\ $$ Answered by benjo_mathlover last updated on 30/Jan/21…
Question Number 65367 by ajfour last updated on 29/Jul/19 Commented by ajfour last updated on 29/Jul/19 $$\mathrm{For}\:\mathrm{maximum}\:\mathrm{arc}\:\mathrm{length}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{origin}\:\mathrm{centered}\:\mathrm{circle}\:\mathrm{within} \\ $$$$\mathrm{the}\:\mathrm{shown}\:\mathrm{unit}\:\mathrm{circle},\:\mathrm{what}\:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circle}. \\ $$…
Question Number 130893 by EDWIN88 last updated on 30/Jan/21 $${Find}\:{a}\:{particular}\:{solution} \\ $$$${of}\:{the}\:{equation}\:{f}\:'\left({x}\right)\:=\:{f}\left({x}\right)\: \\ $$$${such}\:{that}\:{f}\left({x}\right)=\mathrm{2}\:{for}\:{x}=\mathrm{2}\: \\ $$ Answered by mr W last updated on 30/Jan/21 $${y}'={y}…
Question Number 130884 by LYKA last updated on 30/Jan/21 $${let}\:{f}\left({x}.{y}\right)=\left[{x}^{\mathrm{2}} +{xy},{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right]\: \\ $$$$ \\ $$$${prove}\:{from}\:{defination}\:{of}\: \\ $$$${derivative}\:{that}\:: \\ $$$${Df}_{\left({x},{y}\right)} \left(\mathrm{1},\mathrm{2}\right)=\left[\mathrm{4}\boldsymbol{{x}}+\boldsymbol{{y}},−\mathrm{2}{x}+\mathrm{4}{y}\right] \\ $$$$ \\…
Question Number 65300 by rajesh4661kumar@gmail.com last updated on 28/Jul/19 Commented by kaivan.ahmadi last updated on 28/Jul/19 $${f}\left({x}+\Delta{x}\right)={f}\left({x}\right)+{f}'\left({x}\right).\Delta{x} \\ $$$${f}\left({x}\right)={logx}\Rightarrow{f}'\left({x}\right)=\frac{\mathrm{1}}{{xln}\mathrm{10}} \\ $$$$\left.{f}\left(\mathrm{10}.\mathrm{02}\right)\right)={f}\left(\mathrm{10}+\mathrm{0}.\mathrm{02}\right)={f}\left(\mathrm{10}\right)+{f}'\left(\mathrm{10}\right)×\mathrm{0}.\mathrm{02}= \\ $$$$\mathrm{2}.\mathrm{3026}+\frac{\mathrm{1}}{\mathrm{10}{ln}\mathrm{10}}×\mathrm{0}.\mathrm{02}=\mathrm{2}.\mathrm{3026}+\frac{\mathrm{2}}{\mathrm{1000}{ln}\mathrm{10}} \\ $$$$…
Question Number 65292 by Mikael last updated on 27/Jul/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 65270 by Waseem Ahmad bhat last updated on 27/Jul/19 $${d}/{dx}\:{x}−\mathrm{2} \\ $$ Answered by Tanmay chaudhury last updated on 27/Jul/19 $${y}={x}−\mathrm{2} \\ $$$${y}+\bigtriangleup{y}=\left({x}+\bigtriangleup{x}\right)−\mathrm{2}…