Question Number 90630 by jagoll last updated on 25/Apr/20 $${f}\left({x}\right)\:=\:{xe}^{−{x}} \\ $$$${f}^{\left(\mathrm{2020}\right)} \left({x}\right)\:=\: \\ $$ Commented by john santu last updated on 25/Apr/20 $${f}^{\left({n}\right)} \left({x}\right)\:=\:\begin{cases}{\left({n}−{x}\right).{e}^{−{x}}…
Question Number 156137 by cortano last updated on 08/Oct/21 Answered by mr W last updated on 09/Oct/21 Commented by mr W last updated on 09/Oct/21…
Question Number 90575 by niroj last updated on 24/Apr/20 $$\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}: \\ $$$$\:\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{y}}_{\mathrm{3}} +\left(\mathrm{1}−\mathrm{2}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \right)\boldsymbol{\mathrm{y}}_{\mathrm{2}} −\mathrm{8}\boldsymbol{\mathrm{x}}\:_{\:} \boldsymbol{\mathrm{y}}_{\mathrm{1}} −\mathrm{4}\boldsymbol{\mathrm{y}}=\:\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 156105 by zainaltanjung last updated on 08/Oct/21 $$\mathrm{Find}\:\mathrm{The}\:\mathrm{derivatif}\:\mathrm{of}\:\mathrm{this}\:\mathrm{function}: \\ $$$$\left.\mathrm{1}\right).\:\:\mathrm{y}^{\mathrm{4}} +\mathrm{3y}−\mathrm{4x}^{\mathrm{3}} =\mathrm{5x}+\mathrm{1} \\ $$$$\left.\mathrm{2}\right).\:\:\mathrm{4xy}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} \mathrm{y}+\mathrm{x}^{\mathrm{3}} −\mathrm{5x}+\mathrm{6}=\mathrm{0} \\ $$$$\left.\mathrm{3}\right).\:\:\mathrm{3y}^{\mathrm{4}} +\mathrm{4x}−\mathrm{x}^{\mathrm{2}} \mathrm{sin}\:\mathrm{y}−\mathrm{4}=\mathrm{0} \\ $$$$\left.\mathrm{4}\right).\:\mathrm{y}=\mathrm{x}^{\mathrm{2}}…
Question Number 156106 by zainaltanjung last updated on 08/Oct/21 $$\mathrm{Find}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tangen}\:\mathrm{line} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation}\: \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{indicated}\:\mathrm{point}\:\mathrm{P} \\ $$$$\left.\mathrm{1}\right).\:\:\mathrm{xy}+\mathrm{16}=\mathrm{0}\:\rightarrow\mathrm{P}\left(−\mathrm{2},\mathrm{8}\right) \\ $$$$\left.\mathrm{2}\right).\:\:\mathrm{y}^{\mathrm{2}} −\mathrm{4x}^{\mathrm{2}} =\mathrm{5}\rightarrow\mathrm{P}\left(−\mathrm{1},\mathrm{3}\right) \\ $$$$\left.\mathrm{3}\right).\:\:\mathrm{2x}^{\mathrm{3}} −\mathrm{x}^{\mathrm{2}} \mathrm{y}+\mathrm{y}^{\mathrm{3}} −\mathrm{1}=\mathrm{0}\rightarrow\mathrm{P}\left(\mathrm{2},−\mathrm{3}\right)…
Question Number 25034 by chernoaguero@gmail.com last updated on 02/Dec/17 $$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{sin}\:\mathrm{x}+\mathrm{sec}\:\mathrm{x}}{\mathrm{1}+\mathrm{xtan}\:\mathrm{x}} \\ $$$$ \\ $$$$\mathrm{find}\:\mathrm{f}'\left(\mathrm{x}\right) \\ $$ Answered by prakash jain last updated on 02/Dec/17 $$\frac{{d}}{{dx}}\:\frac{{u}}{{v}}=\frac{{u}'{v}−{v}'{u}}{{v}^{\mathrm{2}}…
Question Number 90489 by Tony Lin last updated on 24/Apr/20 $${Find}\:{f}\left({x}\right)\:{if}\:{it}\:{equals}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}^{{x}} }{{n}!} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 24913 by chernoaguero@gmail.com last updated on 28/Nov/17 $$\mathrm{find}\:\mathrm{the}\:\mathrm{derivative}\:\mathrm{of} \\ $$$$\left(\mathrm{sec}\sqrt{\left.\mathrm{1}+\mathrm{cos}\:\mathrm{x}\right)}\right. \\ $$ Commented by prakash jain last updated on 28/Nov/17 $${u}=\mathrm{1}+\mathrm{cos}\:{x} \\ $$$${v}=\sqrt{\mathrm{1}+\mathrm{cos}\:{x}}…
Question Number 24911 by chernoaguero@gmail.com last updated on 28/Nov/17 $$\mathrm{find}\:\mathrm{the}\:\mathrm{derivative}\:\mathrm{of}\: \\ $$$$\sqrt[{\mathrm{4}}]{\frac{\left(\mathrm{1}−\mathrm{x}\right)\sqrt{\mathrm{3x}−\mathrm{8}}}{\mathrm{sin}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{5x}\right)}} \\ $$$$\mathrm{plzzz}\:\mathrm{help}\: \\ $$ Commented by chernoaguero@gmail.com last updated on 29/Nov/17 $$\mathrm{Plzzz}\:\mathrm{help}\:\mathrm{me}\:\mathrm{with}\:\mathrm{question}\:\mathrm{its}\:…
Question Number 90407 by Tony Lin last updated on 23/Apr/20 $$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}^{{p}} }{{n}!}\:{in}\:{terms}\:{of}\:{p} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com