Question Number 90383 by jagoll last updated on 23/Apr/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\: \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{function}\:\mathrm{differentiable}\:\mathrm{at}\: \\ $$$$\mathrm{x}=\mathrm{1}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\begin{cases}{\mathrm{x}^{\mathrm{2}} ,\:\mathrm{x}\leqslant\mathrm{1}}\\{\mathrm{2ax}+\mathrm{b}\:,\:\mathrm{x}>\mathrm{1}}\end{cases} \\ $$ Commented by john santu last updated…
Question Number 155857 by zainaltanjung last updated on 05/Oct/21 $$\left.\mathrm{1}\right).\:\:\mathrm{Find}\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:\:,\:\mathrm{if}\:: \\ $$$$\left.\mathrm{a}\right).\:\:\:\mathrm{y}=\left(\mathrm{8x}−\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{7}\right) \\ $$$$\left.\mathrm{b}\right).\:\:\:\mathrm{y}=\left(\mathrm{3x}^{\mathrm{4}} −\mathrm{10x}+\mathrm{8}\right)\left(\mathrm{2x}^{\mathrm{2}} +\mathrm{5}\right) \\ $$$$ \\ $$$$\left.\mathrm{2}\right).\:\:\mathrm{Find}\:\mathrm{an}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tangen}\:\mathrm{line} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{to}\:\mathrm{the}\:\mathrm{graph}\:\mathrm{of}\:\mathrm{y}=\frac{\mathrm{5}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{at}\:\mathrm{each}\:\mathrm{point} \\…
Question Number 155849 by mnjuly1970 last updated on 05/Oct/21 $$ \\ $$$$\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} {log}\left({sinh}\left({x}\right)\right).{log}\left({tanh}\left({x}\right)\right){dx}=\frac{\mathrm{7}\zeta\left(\mathrm{3}\right)}{\mathrm{8}}\:+\frac{\pi^{\:\mathrm{2}} }{\mathrm{8}}{ln}^{\:} \left(\mathrm{2}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 90307 by niroj last updated on 22/Apr/20 $$\:\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}. \\ $$$$\:\:\:\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{D}}^{\mathrm{2}} −\mathrm{2}\right)\boldsymbol{\mathrm{y}}\:=\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{\boldsymbol{\mathrm{x}}}. \\ $$ Answered by TANMAY PANACEA. last updated on 22/Apr/20…
Question Number 90301 by zainal tanjung last updated on 22/Apr/20 $$\mathrm{Help}\:\mathrm{me} \\ $$$$ \\ $$$$\mathrm{z}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{y}.\mathrm{e}^{\frac{\mathrm{x}}{\mathrm{y}}} . \\ $$$$\mathrm{z}'_{\mathrm{x}} =…?\:\mathrm{and}\:\mathrm{z}'_{\mathrm{y}} =…? \\ $$ Commented by mathmax…
Question Number 90299 by zainal tanjung last updated on 22/Apr/20 $$\mathrm{help}\:\mathrm{me} \\ $$$$ \\ $$$$\mathrm{z}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{xy}.\mathrm{ln}\:\mathrm{xy} \\ $$$$\mathrm{z}_{\mathrm{x}} ^{'} =…?\:\:\:\mathrm{and}\:\:\mathrm{z}'_{\mathrm{y}} =…? \\ $$ Terms of Service…
Question Number 24733 by chernoaguero@gmail.com last updated on 25/Nov/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{second}\:\mathrm{derivative}\:\mathrm{of} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\sqrt{\mathrm{5x}+\mathrm{9}} \\ $$$$\mathrm{find}\:\mathrm{f}^{''} \\ $$ Commented by chernoaguero@gmail.com last updated on 25/Nov/17 $$\mathrm{Using}\:\mathrm{the}\:\mathrm{first}\:\mathrm{principle}\:\mathrm{method} \\…
Question Number 24680 by chernoaguero@gmail.com last updated on 24/Nov/17 Commented by mrW1 last updated on 24/Nov/17 Commented by chernoaguero@gmail.com last updated on 25/Nov/17 $$\mathrm{Thank}\:\mathrm{u}\:\mathrm{sir} \\…
Question Number 24598 by *D¬ B£$T* last updated on 22/Nov/17 $${if}\:{y}={x}^{\mathrm{3}} +{x}^{\mathrm{2}} +\mathrm{3}{x}…. \\ $$$${find}\:{its}\:{turning}\:{point} \\ $$ Answered by jota+ last updated on 23/Nov/17 $$\frac{{d}^{\mathrm{2}}…
Question Number 155477 by alcohol last updated on 01/Oct/21 Answered by puissant last updated on 01/Oct/21 $$\left.{a}\right)\:\forall{n}\in\mathbb{N},\:{f}\left({n}\right)={nf}\left(\mathrm{1}\right) \\ $$$$ \\ $$$${f}\left(\mathrm{2}\right)={f}\left(\mathrm{1}+\mathrm{1}\right)={f}\left(\mathrm{1}\right)+{f}\left(\mathrm{1}\right)=\mathrm{2}{f}\left(\mathrm{1}\right) \\ $$$${alors},\:{on}\:{montre}\:{par}\:{recurrence}\:{que} \\ $$$${f}\left({n}\right)={nf}\left(\mathrm{1}\right)..…