Question Number 152761 by mnjuly1970 last updated on 01/Sep/21 $$ \\ $$$$\:{prove}\:{that}: \\ $$$$ \\ $$$$\:\:\mathrm{S}\::=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\:\mathrm{1}}{{sinh}\:\left(\mathrm{2}^{\:{n}} .{x}\right)}\right)\:\overset{?} {=}\frac{\:\mathrm{2}}{{e}^{\:\mathrm{2}{x}} −\mathrm{1}} \\ $$$$\:{m}.{n}… \\ $$…
Question Number 152653 by mnjuly1970 last updated on 30/Aug/21 $$ \\ $$$$\:\:\Omega\::=\int_{\mathrm{0}} ^{\:\infty} \frac{\:{e}^{\:−{x}^{\:\mathrm{3}} } .\:{sin}\:\left({x}^{\:\mathrm{3}} \:\right)}{{x}}{dx}=\:\frac{\zeta\:\left(\mathrm{2}\:\right)}{\mathrm{2}} \\ $$$$\:{m}.{n}… \\ $$$$ \\ $$ Answered by…
Question Number 87116 by lémùst last updated on 02/Apr/20 $$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+{x}^{\mathrm{2}} {y}=\mathrm{0} \\ $$ Answered by redmiiuser last updated on 03/Apr/20 $$\frac{{y}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{4}} .{y}}{\mathrm{12}}=\mathrm{0}…
Question Number 152631 by mnjuly1970 last updated on 30/Aug/21 Answered by Olaf_Thorendsen last updated on 30/Aug/21 $$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} +{x}^{\mathrm{4}} \right)}{{x}^{\mathrm{2}} }\:{dx} \\ $$$$\mathrm{I}\:=\:\left[−\frac{\mathrm{ln}\left(\mathrm{1}−{x}^{\mathrm{2}} +{x}^{\mathrm{4}}…
Question Number 152601 by mnjuly1970 last updated on 30/Aug/21 $$ \\ $$$$\:\:\:{solve}…. \\ $$$$\:\:{lim}_{\:{n}\rightarrow\infty} \left\{\:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\left(\mathrm{1}\:−\frac{{k}}{{n}}+\frac{{k}^{\:\mathrm{2}} }{{n}^{\:\mathrm{2}} }\:\right)^{\:\frac{\mathrm{1}}{{n}}} \right\}=? \\ $$$$\:\:{m}.{n}… \\ $$$$ \\…
Question Number 152478 by imjagoll last updated on 28/Aug/21 Answered by mr W last updated on 28/Aug/21 $${x}=\mathrm{5}\:\mathrm{cos}\:\theta \\ $$$${y}=\mathrm{5}\:\mathrm{sin}\:\theta \\ $$$${k}=\mathrm{2}×\mathrm{25}\:\mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{6}×\mathrm{25}\:\mathrm{cos}\:\theta\:\mathrm{sin}\:\theta−\mathrm{4}×\mathrm{25}\:\mathrm{sin}^{\mathrm{2}} \:\theta \\…
Question Number 152350 by mnjuly1970 last updated on 27/Aug/21 $$ \\ $$$$\:\:\:\mathrm{prove}\:\mathrm{that}\:…. \\ $$$$\:\: \\ $$$$\boldsymbol{\phi}:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{x}.\:{ln}^{\:\mathrm{2}} \left(\:\mathrm{1}+\:{x}\:\right)}{\mathrm{1}\:+\:{x}^{\:\mathrm{2}} }\:\:\:{dx}\:=\frac{\mathrm{1}}{\mathrm{96}}\:{ln}\left(\mathrm{2}\:\right)\:\left(\:\pi^{\:\mathrm{2}} \:+\:\mathrm{4}\:{ln}^{\:\mathrm{2}} \:\left(\mathrm{2}\:\right)\right)….\blacksquare\:\:\:\:\: \\ $$$$\:\:\:\mathrm{M}.\mathrm{N}.. \\…
Question Number 21270 by Nayon last updated on 18/Sep/17 $$\mathrm{why}\:\mathrm{any}\:\mathrm{infinitely}\:\mathrm{differentiable}\: \\ $$$$\mathrm{function}\:\mathrm{is}\:\mathrm{a}\:\mathrm{power}\:\mathrm{series}? \\ $$$${mathematically}, \\ $$$${if}\:{f}\left({x}\right)\:{is}\:{A}\:{infinitely}\:{differentiable} \\ $$$${function}\:{then}\:{why} \\ $$$${f}\left({x}\right)={ax}^{\mathrm{0}} +{bx}^{\mathrm{1}} +{cx}^{\mathrm{2}} +{dx}^{\mathrm{3}} +{ex}^{\mathrm{4}} +…..…
Question Number 152340 by imjagoll last updated on 27/Aug/21 $$\:\:\mathrm{If}\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{1}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} +\mathrm{4xy}−\mathrm{y}^{\mathrm{2}} \:. \\ $$ Answered by iloveisrael last updated on 27/Aug/21…
Question Number 152310 by DELETED last updated on 27/Aug/21 Answered by DELETED last updated on 27/Aug/21 $$\left.\mathrm{1}\right).\:\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}\right)^{\mathrm{10}} \\ $$$$\:\:\:\:\:\:\:\mathrm{simbol}=\mathrm{f}^{'} \left(\mathrm{x}\right)=\frac{\mathrm{dy}}{\mathrm{dx}}=….? \\ $$$$\:\:\:\:\:\:\:\mathrm{misal}:\mathrm{U}=\mathrm{x}^{\mathrm{2}} −\mathrm{x}\rightarrow\frac{\mathrm{dU}}{\mathrm{dx}}=\mathrm{2x}−\mathrm{1} \\…