Question Number 150747 by mnjuly1970 last updated on 15/Aug/21 $$ \\ $$$${prove}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega:=\int_{\mathrm{0}} ^{\:\infty} {e}^{−\sqrt{{x}}} .{ln}\:\left(\sqrt[{\mathrm{4}}]{\:{x}}\:\right)\overset{?} {=}\:\mathrm{1}−\gamma \\ $$$$\:{m}.{n}.. \\ $$ Answered by Olaf_Thorendsen…
Question Number 19657 by vivek last updated on 14/Aug/17 $${differentiate}\:{the}\:{function}\:{with}\:{respect}\: \\ $$$${to}\:{x} \\ $$$$\mathrm{1}.\:\:\:\:\frac{{secx}−\mathrm{1}}{{secx}+\mathrm{1}} \\ $$ Commented by prakash jain last updated on 14/Aug/17 $${answer}\:{in}\:{Q}\mathrm{19658}…
Question Number 85169 by jagoll last updated on 19/Mar/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{derivative}\:\mathrm{of}\:\mathrm{function} \\ $$$$\mathrm{y}\:=\:\sqrt{\mathrm{sin}\:\mathrm{x}}\:\mathrm{by}\:\mathrm{Leibniz}\:\mathrm{theorem} \\ $$ Commented by mr W last updated on 19/Mar/20 $${i}\:{don}'{t}\:{think}\:{Leibniz}\:{theorem}\:{helps} \\…
Question Number 85111 by niroj last updated on 19/Mar/20 $$\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}: \\ $$$$\:\bigstar.\left(\mathrm{1}+\mathrm{x}+\mathrm{xy}^{\mathrm{2}} \right)\mathrm{dy}+\left(\mathrm{y}+\mathrm{y}^{\mathrm{3}} \right)\mathrm{dx} \\ $$$$\: \\ $$ Commented by jagoll last updated on 19/Mar/20…
Question Number 150594 by liberty last updated on 13/Aug/21 $$\mathrm{The}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{\mathrm{x}} +\mathrm{x}\:\mathrm{being} \\ $$$$\mathrm{differentiable}\:\mathrm{and}\:\mathrm{one}\:\mathrm{to}\:\mathrm{one}\:, \\ $$$$\mathrm{has}\:\mathrm{a}\:\mathrm{differentiable}\:\mathrm{inverse}\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right). \\ $$$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\frac{{d}}{{dx}}\:\left({f}^{−\mathrm{1}} \right)\:\mathrm{at}\:\mathrm{point}\: \\ $$$$\mathrm{f}\left(\mathrm{ln}\:\mathrm{2}\right)\:\mathrm{is}\:\_\_ \\ $$ Answered by…
Question Number 150590 by liberty last updated on 13/Aug/21 $$\mathrm{Let}\:\mathrm{g}\:\mathrm{is}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{function}\:\mathrm{of} \\ $$$$\mathrm{f}\:\mathrm{and}\:\mathrm{f}\:'\left(\mathrm{x}\right)=\frac{\mathrm{x}^{\mathrm{10}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }.\:\mathrm{If}\:\mathrm{g}\left(\mathrm{2}\right)=\:{a}\:\mathrm{then} \\ $$$$\mathrm{g}\:'\left(\mathrm{2}\right)\:=\_\_\: \\ $$ Answered by Olaf_Thorendsen last updated on 13/Aug/21…
Question Number 150540 by mnjuly1970 last updated on 13/Aug/21 $$\:\:\:…\mathrm{solve}… \\ $$$$\:\:\:\:\:\:\:\:\Omega\::=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{\:{n}}{{e}^{\:\mathrm{2}{n}\pi} \:−\:\mathrm{1}}\:=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 84954 by john santu last updated on 17/Mar/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}}\:−\:\sqrt{\mathrm{sin}\:\mathrm{x}}}{\mathrm{x}^{\frac{\mathrm{5}}{\mathrm{2}}} }\:=\:? \\ $$ Answered by john santu last updated on 17/Mar/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}−\mathrm{sin}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}}…
Question Number 150325 by mnjuly1970 last updated on 11/Aug/21 $$\:\:\:\: \\ $$$$\:\:\:\:\:\:\mathrm{Solve}….. \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\boldsymbol{\phi}=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {cos}^{\:\mathrm{2}} \left({x}\:\right).\:{ln}\:\left({cot}\left(\:{x}\:\right)\right){dx}=?\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:…..{m}.{n}….. \\ $$ Answered by…
Question Number 150226 by mnjuly1970 last updated on 10/Aug/21 $$ \\ $$$$\:\:\:\:\:\mathrm{prove}\:\:\mathrm{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\zeta\:\left(\mathrm{0}\:\right)\overset{?} {=}\:\frac{−\mathrm{1}}{\mathrm{2}}\:……….\blacksquare \\ $$$$\:\:\:\:\:\:\:{m}.{n}… \\ $$ Answered by Kamel last…