Menu Close

Category: Differentiation

Find-Z-x-and-Z-y-for-each-of-the-functions-below-a-Z-8x-2-y-14xy-2-5y-2-x-3-b-Z-4x-3-y-2-2x-2-y-3-7xy-5-

Question Number 18469 by tawa tawa last updated on 22/Jul/17 $$\mathrm{Find}\:\mathrm{Z}_{\mathrm{x}} \:\mathrm{and}\:\mathrm{Z}_{\mathrm{y}} \:\mathrm{for}\:\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{functions}\:\mathrm{below} \\ $$$$\left(\mathrm{a}\right)\:\:\mathrm{Z}\:=\:\mathrm{8x}^{\mathrm{2}} \mathrm{y}\:+\:\mathrm{14xy}^{\mathrm{2}} \:+\:\mathrm{5y}^{\mathrm{2}} \mathrm{x}^{\mathrm{3}} \\ $$$$\left(\mathrm{b}\right)\:\:\mathrm{Z}\:=\:\mathrm{4x}^{\mathrm{3}} \mathrm{y}^{\mathrm{2}} \:+\:\mathrm{2x}^{\mathrm{2}} \mathrm{y}^{\mathrm{3}} \:−\:\mathrm{7xy}^{\mathrm{5}} \\…

nice-mathematics-ln-2-n-1-2n-1-1-n-1-m-n-

Question Number 149339 by mnjuly1970 last updated on 04/Aug/21 $$\:\:\:\:\:\:\:\:\:\:…{nice}……{mathematics}… \\ $$$$\:\:\:\:\:\:{ln}\left(\:\mathrm{2}\right)\:−\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{\zeta\:\left(\:\mathrm{2}{n}+\mathrm{1}\:\right)−\mathrm{1}}{{n}\:+\:\mathrm{1}}\:=\:? \\ $$$$\:\:\:\:….{m}.{n}…. \\ $$ Answered by Kamel last updated on 04/Aug/21…

f-5-x-4-sin-x-f-7-x-

Question Number 83782 by jagoll last updated on 06/Mar/20 $$\mathrm{f}^{\left(\mathrm{5}\right)} \:\left(\mathrm{x}\right)\:=\:\mathrm{4}^{−\mathrm{sin}\:\mathrm{x}} \\ $$$$\mathrm{f}^{\left(\mathrm{7}\right)} \left(\mathrm{x}\right)\:=?\: \\ $$ Commented by john santu last updated on 06/Mar/20 $$\mathrm{f}^{\left(\mathrm{n}\right)}…

Question-83649

Question Number 83649 by 698148290 last updated on 04/Mar/20 Answered by MJS last updated on 05/Mar/20 $$=\int\frac{\sqrt{\mathrm{1}−{x}}}{{x}}{dx}+\int\frac{\sqrt{\mathrm{2}−{x}^{\mathrm{2}} }}{{x}}{dx}+\int\frac{\sqrt{\mathrm{4}−{x}^{\mathrm{4}} }}{{x}}{dx} \\ $$$$\mathrm{substitute} \\ $$$${u}=\sqrt{\mathrm{1}−{x}}\:\rightarrow\:{dx}=−\mathrm{2}\sqrt{\mathrm{1}−{x}}{du} \\ $$$${v}=\sqrt{\mathrm{2}−{x}^{\mathrm{2}}…

Find-the-differential-equations-i-log-dy-dx-ax-by-ii-x-cos-y-dy-x-e-x-log-x-e-x-dx-

Question Number 83639 by niroj last updated on 04/Mar/20 $$ \\ $$$$\: \\ $$$$\:\boldsymbol{\mathrm{Find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equations}}: \\ $$$$\:\:\:\left(\mathrm{i}\right)\:\mathrm{log}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)=\mathrm{ax}+\mathrm{by} \\ $$$$\:\:\:\left(\mathrm{ii}\right)\:\mathrm{x}\:\mathrm{cos}\:\mathrm{y}\:\mathrm{dy}=\left(\mathrm{x}\:\mathrm{e}^{\mathrm{x}} \mathrm{log}\:\mathrm{x}\:+\mathrm{e}^{\mathrm{x}} \right)\mathrm{dx} \\ $$$$ \\ $$ Answered…