Menu Close

Category: Differentiation

Prove-that-for-pi-2-lt-x-lt-pi-2-1-1-3-cos-x-1-3-3-cos-3x-1-5-3-cos-5x-to-infinity-pi-8-pi-2-4-x-2-

Question Number 13806 by ajfour last updated on 23/May/17 $${Prove}\:{that}\:{for}\:−\frac{\pi}{\mathrm{2}}<{x}<\frac{\pi}{\mathrm{2}}\:, \\ $$$$\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{3}} }\mathrm{cos}\:{x}−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }\mathrm{cos}\:\mathrm{3}{x}+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{3}} }\mathrm{cos}\:\mathrm{5}{x}−….{to}\:{infinity} \\ $$$$\:\:=\frac{\pi}{\mathrm{8}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{4}}−{x}^{\mathrm{2}} \right)\:. \\ $$ Commented by prakash jain…

ds-dt-v-dv-dt-a-da-dt-b-db-dt-e-de-dt-f-df-dt-g-dg-dt-h-dh-dt-i-di-dt-j-dj-dt-k-now-if-we-continue-this-process-to-infinity-and-if-v-0-v-a-b-e-f-g-h-i-j-1

Question Number 13751 by Nayon last updated on 23/May/17 $$\frac{{ds}}{{dt}}={v},\frac{{dv}}{{dt}}={a},\frac{{da}}{{dt}}={b},\frac{{db}}{{dt}}={e},\frac{{de}}{{dt}}={f} \\ $$$$\frac{{df}}{{dt}}={g},\frac{{dg}}{{dt}}={h},\frac{{dh}}{{dt}}={i},\frac{{di}}{{dt}}={j},\frac{{dj}}{{dt}}={k},….. \\ $$$${now}\:{if}\:{we}\:{continue}\:{this}\:{process}\:{to} \\ $$$${infinity}..{and}\:{if}\:{v}_{\mathrm{0}} ,{v},{a},{b},{e},{f},{g},{h},{i}, \\ $$$${j},…………….=\mathrm{1}\:.{then}\:{calculate} \\ $$$${the}\:{formula}\:{of}\:{v}\:{and}\:{s}\:… \\ $$$$ \\ $$…

Question-144684

Question Number 144684 by mnjuly1970 last updated on 27/Jun/21 $$ \\ $$ Answered by mindispower last updated on 27/Jun/21 $${M}:={xyz}−\left({xy}+{yz}+{zx}\right)+{x}+{y}+{z}−\mathrm{1} \\ $$$$\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{y}}+\frac{\mathrm{1}}{{z}}=\mathrm{1}{xyz}={xy}+{yz}+{zx} \\ $$$${M}={x}+{y}+{z}−\mathrm{1} \\…

Study-f-x-n-1-x-n-sin-nx-n-Find-out-n-1-1-n-sin-n-n-and-n-1-sin-n-n-

Question Number 79126 by ~blr237~ last updated on 22/Jan/20 $${Study}\:\:\:{f}\left({x}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{x}^{{n}} {sin}\left({nx}\right)}{{n}} \\ $$$${Find}\:{out}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \:\frac{{sin}\left({n}\right)}{{n}}\:\:\:{and}\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{sin}\left({n}\right)}{{n}}\: \\ $$ Commented by mathmax…

Question-144554

Question Number 144554 by imjagoll last updated on 26/Jun/21 Answered by Olaf_Thorendsen last updated on 26/Jun/21 $$\left.{a}\right)\:\Delta\:=\:\left[\mathrm{O}{x}\right) \\ $$$$\mathrm{I}_{\Delta} \:=\:\int{r}^{\mathrm{2}} {dm}\:=\:\int{r}^{\mathrm{2}} \delta{dS} \\ $$$$\mathrm{I}_{\Delta} \:=\:\delta\int_{\mathrm{0}}…

A-rectangular-box-open-at-the-top-is-to-have-a-volume-of-32-cube-feet-What-must-be-the-dimensions-so-that-the-total-surface-is-a-minimum-

Question Number 144532 by EDWIN88 last updated on 26/Jun/21 $$\mathrm{A}\:\mathrm{rectangular}\:\mathrm{box},\mathrm{open}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{top}\:\mathrm{is}\:\mathrm{to}\:\mathrm{have}\:\mathrm{a}\:\mathrm{volume}\:\mathrm{of}\:\mathrm{32}\:\mathrm{cube}\:\mathrm{feet} \\ $$$$\mathrm{What}\:\mathrm{must}\:\mathrm{be}\:\mathrm{the}\:\mathrm{dimensions} \\ $$$$\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{total}\:\mathrm{surface}\:\mathrm{is}\:\mathrm{a}\:\mathrm{minimum}? \\ $$ Answered by liberty last updated on 26/Jun/21…

Find-the-shortest-distance-from-the-origin-to-the-hyperbola-x-2-8xy-7y-2-225-z-0-

Question Number 144534 by imjagoll last updated on 26/Jun/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{from}\: \\ $$$$\mathrm{the}\:\mathrm{origin}\:\mathrm{to}\:\mathrm{the}\:\mathrm{hyperbola}\: \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{8xy}+\mathrm{7y}^{\mathrm{2}} =\mathrm{225}\:,\mathrm{z}=\mathrm{0}\: \\ $$ Answered by liberty last updated on 26/Jun/21…