Menu Close

Category: Differentiation

dx-dy-a-b-a-y-c-b-a-sin-2piy-c-2pi-for-a-gt-0-b-gt-0-c-gt-0-on-x-0-

Question Number 130087 by bobhans last updated on 22/Jan/21 dxdy=a+(ba)yc+(ba)sin(2πyc)2πfora>0,b>0,c>0onx0 Answered by benjo_mathlover last updated on 22/Jan/21 dx=ady+(ba)cydy+ba2πsin(2πyc)dy$$\mathrm{x}=\:\mathrm{ay}\:+\frac{\left(\mathrm{b}−\mathrm{a}\right)\mathrm{y}^{\mathrm{2}} }{\mathrm{2c}}\:−\frac{\left(\mathrm{b}−\mathrm{a}\right)\mathrm{c}}{\mathrm{4}\pi^{\mathrm{2}}…

Question-64287

Question Number 64287 by aliesam last updated on 16/Jul/19 Commented by mathmax by abdo last updated on 16/Jul/19 $${R}^{'} \left({t}\right)\:=\frac{\mathrm{15}.\mathrm{0},\mathrm{01}\:{e}^{−\mathrm{0},\mathrm{01}{t}} \left(\mathrm{1}+\mathrm{1},\mathrm{5}{e}^{−\mathrm{0},\mathrm{01}{t}} \right)−\mathrm{15}\left(\mathrm{1}−{e}^{−\mathrm{0},\mathrm{01}{t}} \right)\left(−\mathrm{1},\mathrm{5}\right)\mathrm{0},\mathrm{01}\:{e}^{−\mathrm{0},\mathrm{01}{t}} }{\left(\mathrm{1}+\mathrm{1},\mathrm{5}\:{e}^{−\mathrm{0},\mathrm{01}{t}} \right)^{\mathrm{2}}…