Menu Close

Category: Differentiation

nice-calculus-please-prove-that-0-1-Arctan-x-1-x-dx-pi-8-log-2-

Question Number 129806 by mnjuly1970 last updated on 19/Jan/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{nice}\:\:\:{calculus}\:… \\ $$$$\:\:\:{please}\:\:{prove}\:{that}\::: \\ $$$$\:\:\:\:\Phi\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{Arctan}\left({x}\right)}{\mathrm{1}+{x}}\:{dx}=\frac{\pi}{\mathrm{8}}\:{log}\left(\mathrm{2}\right)\:… \\ $$$$ \\ $$ Answered by Dwaipayan Shikari last…

nice-calculus-please-calculate-I-0-1-1-x-1-6-dx-notice-x-is-the-fractionl-of-x-

Question Number 129805 by mnjuly1970 last updated on 19/Jan/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{nice}\:\:\:\:\:\:\:{calculus}\:… \\ $$$$\:{please}\:{calculate}\:::: \\ $$$$\:\:\:\:\:\mathrm{I}:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{\frac{\mathrm{1}}{\:\sqrt[{\mathrm{6}}]{{x}}}\:\right\}{dx} \\ $$$$\:\:\:\:{notice}:\:\left\{{x}\right\}\:{is}\:{the}\:{fractionl}\:{of}\:''\:{x}\:''. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:……………. \\ $$ Answered by mindispower…

2x-3-2-25-x-3-2-2-

Question Number 64060 by mmkkmm000m last updated on 12/Jul/19 $$\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{2}} +\mathrm{25}/\left({x}+\mathrm{3}\right)^{\mathrm{2}} =\sqrt{\mathrm{2}} \\ $$ Commented by MJS last updated on 12/Jul/19 $$\mathrm{Sir}\:\mathrm{would}\:\mathrm{you}\:\mathrm{mind}\:\mathrm{using}\:\mathrm{smaller}\:\mathrm{font}\:\mathrm{size}\:\mathrm{as}\:\mathrm{it}'\mathrm{s}\:\mathrm{hard}\:\mathrm{to}\:\mathrm{overview}\:\mathrm{the}\:\mathrm{forum}\:\mathrm{like}\:\mathrm{this} \\ $$ Terms…

Question-129545

Question Number 129545 by mnjuly1970 last updated on 16/Jan/21 Answered by mindispower last updated on 16/Jan/21 $$=\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }−\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}…

0-pi-2-x-tanx-dx-

Question Number 129490 by 676597498 last updated on 16/Jan/21 $$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \mathrm{x}\sqrt{\mathrm{tanx}}\mathrm{dx} \\ $$ Answered by mnjuly1970 last updated on 16/Jan/21 $$\:\Omega=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {x}.{sin}^{\frac{\mathrm{1}}{\mathrm{2}}} \left({x}\right).{cos}^{\frac{\mathrm{1}}{\mathrm{2}}}…

If-x-and-y-satisfy-of-equation-x-1-2-y-1-2-5-then-maximum-value-of-x-y-1-equal-to-

Question Number 129462 by bemath last updated on 16/Jan/21 $$\mathrm{If}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{satisfy}\:\mathrm{of}\:\mathrm{equation}\: \\ $$$$\:\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{y}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{5}\:\mathrm{then}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{x}}{\mathrm{y}+\mathrm{1}}\:\mathrm{equal}\:\mathrm{to}\:?\: \\ $$ Commented by bramlexs22 last updated on 16/Jan/21…

Solve-the-ODE-s-using-lipschitz-condition-with-constant-k-1-f-x-y-x-2-x-y-2-f-x-y-x-y-

Question Number 129445 by Engr_Jidda last updated on 15/Jan/21 $${Solve}\:{the}\:{ODE}'{s}\:{using}\:{lipschitz}\:{condition} \\ $$$${with}\:{constant}\:{k}. \\ $$$$\left.\mathrm{1}\right)\:{f}\left({x},{y}\right)={x}^{\mathrm{2}} \varrho^{{x}+{y}} \\ $$$$\left.\mathrm{2}\right)\:{f}\left({x},{y}\right)={x}\mid{y}\mid \\ $$ Terms of Service Privacy Policy Contact:…