Menu Close

Category: Differentiation

x-3-2-y-5-2-45-A-0-11-of-the-circle-to-the-point-of-trying-to-find-the-angular-coefficient-

Question Number 12968 by @ANTARES_VY last updated on 08/May/17 $$\left(\boldsymbol{\mathrm{x}}+\mathrm{3}\right)^{\mathrm{2}} +\left(\boldsymbol{\mathrm{y}}−\mathrm{5}\right)^{\mathrm{2}} =\mathrm{45}\:\:\:\boldsymbol{\mathrm{A}}\left(\mathrm{0};\mathrm{11}\right) \\ $$$$\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{circle}}\:\:\boldsymbol{\mathrm{to}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{point}}\:\:\boldsymbol{\mathrm{of}} \\ $$$$\boldsymbol{\mathrm{trying}}\:\:\boldsymbol{\mathrm{to}}\:\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{angular}}\:\:\boldsymbol{\mathrm{coefficient}}. \\ $$ Answered by 433 last updated on 08/May/17…

Find-out-A-n-2-n-n-3-n-where-p-n-1-1-n-p-

Question Number 78490 by ~blr237~ last updated on 18/Jan/20 $$\mathrm{Find}\:\mathrm{out}\:\mathrm{A}\:=\underset{\mathrm{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\:\frac{\zeta\left(\mathrm{n}\right)}{\mathrm{n}\left(−\mathrm{3}\right)^{\mathrm{n}} }\:\:\:\:\:\:\:\:\:\:\:\mathrm{where}\:\:\zeta\left(\mathrm{p}\right)=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{p}} }\: \\ $$ Answered by mind is power last updated…

let-P-x-x-5-209x-56-Prove-that-there-exist-two-roots-a-b-such-as-ab-1-Find-out-their-sum-a-b-and-deduce-the-decomposition-of-P-x-in-prime-factors-

Question Number 78489 by ~blr237~ last updated on 18/Jan/20 $$\mathrm{let}\:\:\mathrm{P}\left(\mathrm{x}\right)=\:\mathrm{x}^{\mathrm{5}} −\mathrm{209x}+\mathrm{56}\: \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{there}\:\mathrm{exist}\:\mathrm{two}\:\mathrm{roots}\:\:\mathrm{a},\mathrm{b}\:\mathrm{such}\:\mathrm{as}\:\:\:\mathrm{ab}=\mathrm{1} \\ $$$$\mathrm{Find}\:\mathrm{out}\:\mathrm{their}\:\mathrm{sum}\:\left(\:\mathrm{a}+\mathrm{b}=?\right)\:\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{the}\:\mathrm{decomposition}\:\mathrm{of}\:\mathrm{P}\left(\mathrm{x}\right)\:\mathrm{in}\:\mathrm{prime}\:\mathrm{factors}. \\ $$ Answered by MJS last updated on 18/Jan/20 $$\mathrm{2}\:\mathrm{roots}\:\mathrm{with}\:{ab}=\mathrm{1}\:\Rightarrow\:\mathrm{we}\:\mathrm{have}\:\mathrm{a}\:\mathrm{square}\:\mathrm{factor}…

The-maximum-value-of-y-x-3-2-x-2-2-2-x-2-x-2-1-2-is-A-10-C-4-B-2-5-D-10-

Question Number 143997 by liberty last updated on 20/Jun/21 $$\:{The}\:{maximum}\:{value}\:{of}\: \\ $$$${y}\:=\:\sqrt{\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\left({x}^{\mathrm{2}} −\mathrm{2}\right)^{\mathrm{2}} }−\sqrt{{x}^{\mathrm{2}} +\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${is}\:\left({A}\right)\:\sqrt{\mathrm{10}}\:\:\:\:\:\:\:\left({C}\right)\:\mathrm{4}\: \\ $$$$\:\:\:\:\:\:\left({B}\right)\:\mathrm{2}\sqrt{\mathrm{5}}\:\:\:\:\:\left({D}\right)\:\mathrm{10}\: \\ $$ Answered…

the-convolute-function-of-both-f-and-g-is-marked-f-g-And-define-by-f-g-x-0-x-f-x-t-g-t-dt-Let-noted-E-the-set-of-function-define-on-R-0-Prove-that-there-exist-a-function-f-0-E-such-as-for-

Question Number 78400 by ~blr237~ last updated on 17/Jan/20 $$\mathrm{the}\:\mathrm{convolute}\:\mathrm{function}\:\mathrm{of}\:\mathrm{both}\:\mathrm{f}\:\mathrm{and}\:\mathrm{g}\:\mathrm{is}\:\mathrm{marked}\:\mathrm{f}\ast\mathrm{g} \\ $$$$\mathrm{And}\:\mathrm{define}\:\mathrm{by}\:\:\left(\mathrm{f}\ast\mathrm{g}\right)\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\mathrm{x}} \mathrm{f}\left(\mathrm{x}−\mathrm{t}\right)\mathrm{g}\left(\mathrm{t}\right)\mathrm{dt} \\ $$$$\mathrm{Let}\:\mathrm{noted}\:\mathrm{E}=\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{function}\:\mathrm{define}\:\mathrm{on}\:\mathbb{R}_{+} \\ $$$$\left.\mathrm{0}\right)\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{there}\:\mathrm{exist}\:\mathrm{a}\:\mathrm{function}\:\mathrm{f}_{\mathrm{0}} \in\mathrm{E}\:\mathrm{such}\:\mathrm{as}\:\mathrm{for}\:\mathrm{all}\:\mathrm{x}>\mathrm{0}\:,\:\int_{\mathrm{0}} ^{\infty} \mathrm{f}_{\mathrm{0}} \left(\mathrm{t}\right)\mathrm{e}^{−\mathrm{xt}} \mathrm{dt}=\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\mathrm{Prove}\:\mathrm{that}\:\left(\mathrm{E},\ast\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{semigroup}…

Question-12814

Question Number 12814 by syambabu087@gmail.com last updated on 02/May/17 Commented by FilupS last updated on 02/May/17 $${x}\left({y}^{{n}} −{y}\right)+\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\frac{{dy}}{{dx}}=−{x}\left({y}^{{n}} −{y}\right) \\ $$$$\frac{\mathrm{1}}{{y}^{{n}} −{y}}\:\frac{{dy}}{{dx}}=−{x} \\…

Question-143781

Question Number 143781 by bemath last updated on 18/Jun/21 Answered by liberty last updated on 18/Jun/21 $$\mathrm{let}\:\mathrm{x}+\mathrm{1}=\:\mathrm{t}\Rightarrow\mathrm{f}\left(\mathrm{t}−\mathrm{1}\right)=\mathrm{y}=\frac{\left(\mathrm{t}+\mathrm{9}\right)\left(\mathrm{t}+\mathrm{1}\right)}{\mathrm{t}} \\ $$$$\mathrm{y}=\mathrm{t}+\mathrm{10}+\frac{\mathrm{9}}{\mathrm{t}}\:.\Rightarrow\:\mathrm{t}+\frac{\mathrm{9}}{\mathrm{t}}\:\mathrm{has}\:\mathrm{minimum}\:\mathrm{6}\:\mathrm{for}\:\mathrm{t}=\mathrm{3}\: \\ $$$$\mathrm{so}\:\mathrm{f}\left(\mathrm{t}\right)_{\mathrm{min}} =\mathrm{3}+\mathrm{10}+\frac{\mathrm{9}}{\mathrm{3}}=\mathrm{16} \\ $$ Answered…

what-s-values-y-2e-x-e-x-2-1-x-3-will-feature-all-of-the-outlets-growing-

Question Number 12708 by @ANTARES_VY last updated on 29/Apr/17 $$\boldsymbol{\mathrm{what}}'\boldsymbol{\mathrm{s}}\:\boldsymbol{\mathrm{values}}\:\:\boldsymbol{\alpha}. \\ $$$$\boldsymbol{\mathrm{y}}=\mathrm{2}\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} −\boldsymbol{\alpha\mathrm{e}}^{−\boldsymbol{\mathrm{x}}} +\left(\mathrm{2}\boldsymbol{\alpha}+\mathrm{1}\right)\boldsymbol{\mathrm{x}}−\mathrm{3} \\ $$$$\boldsymbol{\mathrm{will}}\:\:\boldsymbol{\mathrm{feature}}\:\:\boldsymbol{\mathrm{all}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{outlets}} \\ $$$$\boldsymbol{\mathrm{growing}}. \\ $$ Terms of Service Privacy Policy…

y-sin2x-x-x-0-find-the-range-of-the-function-

Question Number 12704 by @ANTARES_VY last updated on 29/Apr/17 $$\boldsymbol{\mathrm{y}}=\boldsymbol{\mathrm{sin}}\mathrm{2}\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{x}}\:\:\left(\boldsymbol{\mathrm{x}}\in\left[\mathrm{0};\boldsymbol{\pi}\right]\right)\:\:\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{range}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{function}}. \\ $$ Answered by mrW1 last updated on 29/Apr/17 $${y}=\mathrm{sin}\:\mathrm{2}{x}−{x} \\ $$$${y}'=\mathrm{2cos}\:\mathrm{2}{x}−\mathrm{1} \\…