Menu Close

Category: Differentiation

A-geometric-sequence-with-n-terms-a-1-a-2-a-3-a-n-which-has-a-1-a-n-3-If-the-product-of-all-n-terms-a-1-a-2-a-3-a-n-59049-Determine-the-value-of-n-

Question Number 11633 by Joel576 last updated on 29/Mar/17 $$\mathrm{A}\:\mathrm{geometric}\:\mathrm{sequence}\:\mathrm{with}\:{n}\:\mathrm{terms}\: \\ $$$${a}_{\mathrm{1}} ,\:{a}_{\mathrm{2}} ,\:{a}_{\mathrm{3}} ,\:…,\:{a}_{{n}} \:\mathrm{which}\:\mathrm{has}\:{a}_{\mathrm{1}} \:.\:{a}_{{n}} \:=\:\mathrm{3} \\ $$$$\mathrm{If}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{all}\:{n}\:\mathrm{terms}\:=\:{a}_{\mathrm{1}} {a}_{\mathrm{2}} {a}_{\mathrm{3}} …{a}_{{n}} =\:\mathrm{59049} \\…

Prove-that-n-N-k-1-n-1-sin-kpi-2n-k-1-n-1-cos-kpi-2n-

Question Number 142698 by Willson last updated on 04/Jun/21 $$\mathrm{Prove}\:\mathrm{that}\:\forall\mathrm{n}\in\mathbb{N}^{\ast} \\ $$$$\:\:\:\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\prod}}\mathrm{sin}\left(\frac{\mathrm{k}\pi}{\mathrm{2n}}\right)\:=\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}−\mathrm{1}} {\prod}}\mathrm{cos}\left(\frac{\mathrm{k}\pi}{\mathrm{2n}}\right) \\ $$ Answered by Ar Brandon last updated on…

why-dy-dx-dy-du-du-dx-

Question Number 11580 by Nayon last updated on 28/Mar/17 $${why}\:\frac{{dy}}{{dx}}=\frac{{dy}}{{du}}.\frac{{du}}{{dx}} \\ $$ Answered by mrW1 last updated on 28/Mar/17 $${the}\:{chain}\:{rule}\:{is}\:{one}\:{of}\:{the}\:{elementary} \\ $$$${rules}.\:{you}\:{should}\:{know}\:{them},\:{but}\:\: \\ $$$${you}\:{don}'{t}\:{need}\:{to}\:{prove}\:{them}.\:{if} \\…

why-d-f-g-x-dx-df-g-x-dg-x-dg-x-dx-

Question Number 11571 by Nayon last updated on 28/Mar/17 $${why}\:\:\:\frac{{d}\left[{f}\left\{{g}\left({x}\right)\right\}\right]}{{dx}}=\frac{{df}\left[\left\{{g}\left({x}\right)\right\}\right]}{{dg}\left({x}\right)}.\frac{{dg}\left({x}\right)}{{dx}}? \\ $$ Answered by mrW1 last updated on 28/Mar/17 $${y}={f}\left({u}\right) \\ $$$${u}={g}\left({x}\right) \\ $$$$\frac{{dy}}{{dx}}=\frac{{dy}}{{du}}×\frac{{du}}{{dx}} \\…