Menu Close

Category: Differentiation

why-dy-dx-dy-du-du-dx-

Question Number 11580 by Nayon last updated on 28/Mar/17 $${why}\:\frac{{dy}}{{dx}}=\frac{{dy}}{{du}}.\frac{{du}}{{dx}} \\ $$ Answered by mrW1 last updated on 28/Mar/17 $${the}\:{chain}\:{rule}\:{is}\:{one}\:{of}\:{the}\:{elementary} \\ $$$${rules}.\:{you}\:{should}\:{know}\:{them},\:{but}\:\: \\ $$$${you}\:{don}'{t}\:{need}\:{to}\:{prove}\:{them}.\:{if} \\…

why-d-f-g-x-dx-df-g-x-dg-x-dg-x-dx-

Question Number 11571 by Nayon last updated on 28/Mar/17 $${why}\:\:\:\frac{{d}\left[{f}\left\{{g}\left({x}\right)\right\}\right]}{{dx}}=\frac{{df}\left[\left\{{g}\left({x}\right)\right\}\right]}{{dg}\left({x}\right)}.\frac{{dg}\left({x}\right)}{{dx}}? \\ $$ Answered by mrW1 last updated on 28/Mar/17 $${y}={f}\left({u}\right) \\ $$$${u}={g}\left({x}\right) \\ $$$$\frac{{dy}}{{dx}}=\frac{{dy}}{{du}}×\frac{{du}}{{dx}} \\…

if-f-x-g-y-then-why-d-dx-f-x-d-dy-g-y-

Question Number 11563 by Nayon last updated on 28/Mar/17 $${if}\:\:{f}\left({x}\right)={g}\left({y}\right) \\ $$$${then}\:{why}\:\frac{{d}}{{dx}}\left({f}\left({x}\right)\right)=\frac{{d}}{{dy}}\left({g}\left({y}\right)\right)? \\ $$ Commented by mrW1 last updated on 28/Mar/17 $${this}\:{is}\:{not}\:{always}\:{correct}.\:{but} \\ $$$$\frac{{d}}{{dx}}\left({f}\left({x}\right)\right)=\frac{{d}}{{dy}}\left({g}\left({y}\right)\right)×\frac{{dy}}{{dx}} \\…

find-d-dx-y-where-y-x-x-

Question Number 11552 by Nayon last updated on 28/Mar/17 $${find}\:\frac{{d}}{{dx}}\left({y}\right)\:{where}\:\:{y}=\overset{\sqrt{{x}}} {\:}\sqrt{\sqrt{{x}}} \\ $$$$ \\ $$ Answered by ajfour last updated on 28/Mar/17 $${y}\:=\:\left(\sqrt{{x}}\right)^{\frac{\mathrm{1}}{\:\sqrt{{x}}}} \\ $$$$\mathrm{ln}\:{y}\:=\frac{\mathrm{ln}\:\sqrt{{x}}}{\:\sqrt{{x}}}…