Question Number 129319 by snipers237 last updated on 14/Jan/21 $${Prove}\:{that}\: \\ $$$$\:{if}\:{f}\:{is}\:{such}\:{as}\:{f}\:'\left({x}\right)=\frac{{f}\left({x}\right)}{{x}\left(\mathrm{1}−{x}−{f}\left({x}\right)\right)} \\ $$$${and}\:{f}\left(\mathrm{1}\right)=\mathrm{0}\:{but}\:{f}\:\ncong\Theta\:.\:{Then} \\ $$$$\:\bigstar\:{f}\:{is}\:{the}\:{unique}\:{bijection}\:{from}\:\mathbb{R}^{\ast} \:{to}\:\mathbb{R}\:{and}\: \\ $$$$\:\bigstar\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)=+\infty\:\:{and}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}{xf}\left({x}\right)=\mathrm{0} \\ $$$$\:\bigstar\:\int_{\mathrm{0}} ^{+\infty} {f}^{−\mathrm{1}}…
Question Number 129317 by sdfg last updated on 14/Jan/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 129272 by mnjuly1970 last updated on 14/Jan/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{nice}\:\:{calculus}… \\ $$$$\:\:\:{evsluate}:: \\ $$$$\:\:\:\:\:\Omega=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \:\left(\frac{\Gamma\left({n}+\frac{\mathrm{3}}{\mathrm{2}}\right)}{\mathrm{2}^{{n}} \:\Gamma\left(\:\mathrm{2}{n}\:+\mathrm{2}\right)}\right)=??? \\ $$$$ \\ $$ Answered by Dwaipayan…
Question Number 63698 by Rio Michael last updated on 07/Jul/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 129171 by benjo_mathlover last updated on 13/Jan/21 $$\:\sqrt{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }\:\mathrm{dx}\:−\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\mathrm{dy}\:=\:\mathrm{0} \\ $$$$\:\mathrm{y}\left(\mathrm{0}\right)\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\: \\ $$ Answered by bramlexs22 last updated on 13/Jan/21 $$\:\Rightarrow\:\sqrt{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }\:\mathrm{dx}\:=\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}}…
Question Number 129084 by mnjuly1970 last updated on 12/Jan/21 $$\:\:\:\:\:\:\:…{nice}\:\:{calculus}… \\ $$$$\:\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\:\frac{\mathrm{2}}{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{20}}+\frac{\mathrm{1}}{\mathrm{56}}−\frac{\mathrm{1}}{\mathrm{120}}+\frac{\mathrm{1}}{\mathrm{220}}−…\right) \\ $$$$\:\:\:\:\:\:\:\overset{???} {=}\pi\:−\mathrm{3}\:\: \\ $$ Answered by Dwaipayan Shikari last updated…
Question Number 129072 by liberty last updated on 12/Jan/21 $$\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{F}\left(\mathrm{0}\right)\:\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{function}\: \\ $$$$\:\mathrm{F}\left(\mathrm{x}\right)=\:\frac{\left(\mathrm{4}^{{x}} −\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{sin}\:\left(\frac{{x}}{\mathrm{4}}\right)\:\mathrm{ln}\:\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{3}}\right)}\:\mathrm{becomes}\:\mathrm{continous} \\ $$$$\mathrm{at}\:{x}\:=\:\mathrm{0}? \\ $$ Answered by MJS_new last updated on…
Question Number 129041 by oustmuchiya@gmail.com last updated on 12/Jan/21 $${Differentiate}\:\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\left(\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{3}} \left(\mathrm{6}\boldsymbol{{x}}^{\mathrm{2}} \right) \\ $$ Answered by bramlexs22 last updated on 12/Jan/21 $$\:\mathrm{f}\:'\left(\mathrm{x}\right)=\mathrm{12x}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{3}} +\mathrm{6x}\left(\mathrm{x}^{\mathrm{2}}…
Question Number 129039 by oustmuchiya@gmail.com last updated on 12/Jan/21 $${partially}\:{Differentiate}\:{function} \\ $$$$\boldsymbol{{f}}\left(\boldsymbol{{x}},\boldsymbol{{y}}\right)=\mathrm{2}\boldsymbol{{x}}^{−\mathrm{2}} \boldsymbol{{y}}+\boldsymbol{{xy}}^{\mathrm{3}} +\frac{\mathrm{2}}{\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}} \\ $$ Answered by liberty last updated on 12/Jan/21 $$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{2x}^{−\mathrm{2}}…
Question Number 129034 by oustmuchiya@gmail.com last updated on 12/Jan/21 $${Differentiate}\:\boldsymbol{{siny}}\:−\boldsymbol{{x}}^{\mathrm{2}} \boldsymbol{{y}}^{\mathrm{3}} −\boldsymbol{{cosx}}=\mathrm{3}\boldsymbol{{y}} \\ $$ Answered by MJS_new last updated on 12/Jan/21 $$\left(\mathrm{cos}\:{y}\:−\mathrm{3}{x}^{\mathrm{2}} {y}^{\mathrm{2}} \right){dy}+\left(−\mathrm{2}{xy}^{\mathrm{3}} +\mathrm{sin}\:{x}\right){dx}=\mathrm{3}{dy}…