Question Number 64287 by aliesam last updated on 16/Jul/19 Commented by mathmax by abdo last updated on 16/Jul/19 $${R}^{'} \left({t}\right)\:=\frac{\mathrm{15}.\mathrm{0},\mathrm{01}\:{e}^{−\mathrm{0},\mathrm{01}{t}} \left(\mathrm{1}+\mathrm{1},\mathrm{5}{e}^{−\mathrm{0},\mathrm{01}{t}} \right)−\mathrm{15}\left(\mathrm{1}−{e}^{−\mathrm{0},\mathrm{01}{t}} \right)\left(−\mathrm{1},\mathrm{5}\right)\mathrm{0},\mathrm{01}\:{e}^{−\mathrm{0},\mathrm{01}{t}} }{\left(\mathrm{1}+\mathrm{1},\mathrm{5}\:{e}^{−\mathrm{0},\mathrm{01}{t}} \right)^{\mathrm{2}}…
Question Number 129815 by stelor last updated on 19/Jan/21
Question Number 129806 by mnjuly1970 last updated on 19/Jan/21
Question Number 129805 by mnjuly1970 last updated on 19/Jan/21
Question Number 129758 by I want to learn more last updated on 18/Jan/21
Question Number 64074 by mmkkmm000m last updated on 12/Jul/19
Question Number 64060 by mmkkmm000m last updated on 12/Jul/19
Question Number 129545 by mnjuly1970 last updated on 16/Jan/21 Answered by mindispower last updated on 16/Jan/21 $$=\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }−\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}…
Question Number 129490 by 676597498 last updated on 16/Jan/21
Question Number 129462 by bemath last updated on 16/Jan/21