Question Number 76919 by jagoll last updated on 01/Jan/20 $${what}\:{range}\: \\ $$$${the}\:{function}\:{y}\:=\:\frac{{x}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} +{x}}}\:? \\ $$ Answered by MJS last updated on 01/Jan/20 $$\mathrm{defined}\:\mathrm{for}\:−\infty<{x}<−\mathrm{1}\vee\mathrm{0}<{x}<+\infty \\ $$$$\frac{{d}}{{dx}}\left[\frac{{x}−\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}}…
Question Number 76842 by jagoll last updated on 31/Dec/19 $$ \\ $$$${what}\:{is}\:{solution}\:{y}^{''\:} +\:\:{y}\:=\:\mathrm{0}\:. \\ $$ Commented by mathmax by abdo last updated on 31/Dec/19 $${the}\:{caraceristc}\:{equation}\:{is}\:{r}^{\mathrm{2}}…
Question Number 142349 by mnjuly1970 last updated on 30/May/21 $$ \\ $$$$\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\zeta\left(\mathrm{2}{n}+\mathrm{2}\right)\left(−\mathrm{1}\right)^{{n}} }{\mathrm{4}^{{n}} }=? \\ $$ Answered by Dwaipayan Shikari last updated on…
Question Number 142318 by mnjuly1970 last updated on 29/May/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Nice}…\succcurlyeq\succcurlyeq\succcurlyeq\ast\ast\ast\preccurlyeq\preccurlyeq\preccurlyeq…{Calculus} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Omega:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\left(\mathrm{1}−\sqrt[{\mathrm{3}}]{{x}}\:\right)\left(\mathrm{1}−\sqrt[{\mathrm{5}}]{{x}\:}\:\right)\left(\mathrm{1}−\sqrt[{\mathrm{7}}]{{x}}\:\right)}{{ln}\left(\:\sqrt[{\mathrm{3}}]{{x}\:\:}\:\right)}\:{dx}=? \\ $$$$\:\:\:\:\:\:\:….{m}.{n} \\ $$ Answered by Dwaipayan Shikari last updated on…
Question Number 142275 by mnjuly1970 last updated on 29/May/21 $$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:…….{Advanced}\:\:…\ast\ast\ast\ast\ast\:…{Integral}…… \\ $$$$\:\:\:\:\:\:{Prove}\:\:{that}\:::\:\:\:\Phi\::=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{x}}{\left(\mathrm{1}−{x}+{x}^{\mathrm{2}} \right){log}\left({x}\right)}{dx}= \\ $$$$\:\:\:{proof}:: \\ $$$$\:\:\:\:\:\:\Phi:=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}−{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}^{\mathrm{3}} \right){log}\left({x}\right)}{dx}…
Question Number 142268 by alcohol last updated on 29/May/21 $$\int\frac{{e}^{{x}} }{{cosx}}{dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 11151 by suci last updated on 14/Mar/17 $${f}\left({x}\right)=\mathrm{2}^{\frac{\mathrm{1}−{x}}{\mathrm{2}+{x}^{\mathrm{2}} }} \\ $$$${f}'\left({x}\right)=…??? \\ $$ Answered by ajfour last updated on 14/Mar/17 $$=\:\mathrm{2}^{\frac{\mathrm{1}−{x}}{\mathrm{2}+{x}^{\mathrm{2}} }} \left(\mathrm{ln}\:\mathrm{2}\right)\left[\frac{{x}^{\mathrm{2}}…
Question Number 11150 by suci last updated on 14/Mar/17 $${f}\left({x}\right)=\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{{sin}\mathrm{2}{x}} \\ $$$${f}'\left({x}\right)=…??? \\ $$ Answered by ajfour last updated on 14/Mar/17 $$=\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{sin}\:\mathrm{2}{x}} \:\left\{\left(\mathrm{2cos}\:\mathrm{2}{x}\right)\mathrm{ln}\:\left({x}^{\mathrm{2}}…
Question Number 142212 by Rexzie last updated on 27/May/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 142200 by liberty last updated on 27/May/21 $$\:{Let}\:{p}\:\&\:{q}\:{real}\:{positive}\:{number} \\ $$$$\:\:{what}\:{the}\:{minimum}\:{of}\:\left(\frac{{p}^{\mathrm{2}} }{{q}^{\mathrm{2}} }\:+\frac{{q}}{{p}}\right)^{\mathrm{3}} . \\ $$ Answered by MJS_new last updated on 27/May/21 $$\mathrm{let}\:{q}={pt}\wedge{t}>\mathrm{0}…