Question Number 75509 by ~blr237~ last updated on 12/Dec/19 $$\mathrm{Give}\:\mathrm{the}\:\mathrm{exponentional}\:\mathrm{form}\:\mathrm{of}\: \\ $$$$\mathrm{the}\:\mathrm{complex}\:\mathrm{Z}=\frac{\mathrm{1}−\mathrm{cos}\theta+\mathrm{itan}\theta}{\mathrm{1}+\mathrm{cos}\theta−\mathrm{isin}\theta} \\ $$ Answered by MJS last updated on 12/Dec/19 $$\frac{\mathrm{1}−{c}+\mathrm{i}{t}}{\mathrm{1}+{c}−\mathrm{i}{s}}=\frac{{c}^{\mathrm{2}} −\mathrm{2}{c}−{st}+\mathrm{1}}{{c}^{\mathrm{2}} −\mathrm{2}{c}+{s}^{\mathrm{2}} +\mathrm{1}}−\frac{{cs}+{ct}−{s}−{t}}{{c}^{\mathrm{2}}…
Question Number 75463 by indalecioneves last updated on 11/Dec/19 Answered by mr W last updated on 12/Dec/19 $${shape}\:{of}\:{cable}\:{is}\:{catenary}: \\ $$$$\frac{{L}}{{d}}=\frac{\mathrm{2}\:\mathrm{sinh}\:\frac{{d}}{{x}}}{\frac{{d}}{{x}}} \\ $$$$\frac{{f}}{{d}}=\frac{\mathrm{cosh}\:\frac{{d}}{{x}}−\mathrm{1}}{\frac{{d}}{{x}}} \\ $$$${with}\:{t}=\frac{{d}}{{x}}\:{as}\:{parameter}: \\…
Question Number 75392 by wo1lxjwjdb last updated on 10/Dec/19 $${what}\:{is}\:{the}\:{general}\:{formular} \\ $$$${for}\:{the}\:\frac{{d}^{{n}} }{{dx}^{{n}} }\left(\frac{{x}}{{e}^{{x}} −\mathrm{1}}\right) \\ $$ Answered by mind is power last updated on…
Question Number 75382 by Master last updated on 10/Dec/19 Commented by Master last updated on 10/Dec/19 $$\mathrm{please}\:\mathrm{solve} \\ $$ Answered by arkanmath7@gmail.com last updated on…
Question Number 140831 by mnjuly1970 last updated on 13/May/21 $$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:……{nice}\:….\:{calculus}…… \\ $$$$\:\:\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\:\:\:\:\:\:\xi\::=\:\int_{−\infty} ^{\:\infty} \frac{{cos}\:\left(\pi{x}^{\mathrm{2}} \right)}{{cosh}\left(\pi{x}\right)}{dx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:…. \\ $$$$\:\:\:\:……. \\ $$ Answered by…
Question Number 140779 by 676597498 last updated on 12/May/21 $$\begin{cases}{\mathrm{7}{x}\equiv\mathrm{3}\left({mod}\mathrm{5}\right)}\\{\mathrm{5}{x}\equiv\mathrm{3}\left({mod}\mathrm{9}\right)}\end{cases} \\ $$$${solve}\:{for}\:{x} \\ $$ Commented by 676597498 last updated on 12/May/21 $${pls} \\ $$ Answered…
Question Number 75224 by ~blr237~ last updated on 08/Dec/19 $$\mathrm{Prove}\:\mathrm{that}\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{xln}\mid\mathrm{x}\mid−\left(\mathrm{x}−\mathrm{m}\right)\mathrm{ln}\mid\mathrm{x}−\mathrm{m}\mid\right)=+\infty \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 75228 by ~blr237~ last updated on 08/Dec/19 $$\:\mathrm{Let}\:\mathrm{consider}\: \\ $$$$\mathrm{A}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\int_{\mathrm{0}} ^{\mathrm{1}} \left(\Gamma\left(\mathrm{t}\right)\right)^{\mathrm{x}} \mathrm{dt}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\:\mathrm{A}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\Gamma\left(\mathrm{t}\right)\right)\mathrm{dt}\:\: \\ $$$$\mathrm{Deduce}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{A} \\ $$ Commented…
Question Number 75225 by ~blr237~ last updated on 08/Dec/19 $$\mathrm{Prove}\:\mathrm{that}\:\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{xln}\mid\mathrm{x}\mid−\left(\mathrm{x}−\mathrm{m}\right)\mathrm{ln}\mid\mathrm{x}−\mathrm{m}\mid\right)=+\infty \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 9686 by tawakalitu last updated on 24/Dec/16 Answered by mrW last updated on 24/Dec/16 $$\mathrm{u}=\mathrm{log}\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \right) \\ $$$$\frac{\mathrm{du}}{\mathrm{dy}}=\frac{\mathrm{2y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} }×\mathrm{log}\:\mathrm{e}…