Menu Close

Category: Differentiation

calculus-II-find-convergence-of-n-2-1-n-ln-3-n-ln-n-

Question Number 140671 by mnjuly1970 last updated on 11/May/21 $$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:……\:{calculus}\:….\:\left({II}\right)….. \\ $$$$\:\:\:{find}\:{convergence}\:{of}\::: \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\phi}:=\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}\left({ln}^{\mathrm{3}} \left({n}\right)+{ln}\left({n}\right)\right)}\: \\ $$$$ \\ $$ Answered by…

Question-75078

Question Number 75078 by ~blr237~ last updated on 07/Dec/19 Answered by MJS last updated on 07/Dec/19 $$\mathrm{the}\:\mathrm{diagonal}\:\mathrm{is} \\ $$$$\sqrt{\left(\mathrm{14}+\mathrm{9}\right)^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} }=\mathrm{17}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\:{x}=\mathrm{17} \\ $$…

Let-f-C-0-1-0-1-Prove-that-lim-n-0-1-n-f-1-n-i-1-n-x-i-dx-1-dx-n-f-1-2-

Question Number 75079 by ~blr237~ last updated on 07/Dec/19 $$\mathrm{Let}\:\mathrm{f}\in\mathrm{C}\left(\left[\mathrm{0},\mathrm{1}\right],\left[\mathrm{0},\mathrm{1}\right]\right)\:\: \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\:\int_{\left[\mathrm{0},\mathrm{1}\right]^{\mathrm{n}} } \mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{n}}\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{x}_{\mathrm{i}} \:\right)\mathrm{dx}_{\mathrm{1}} ….\mathrm{dx}_{\mathrm{n}} \:=\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$ Terms of Service…

Prove-that-if-f-is-a-function-R-R-and-there-exist-x-0-gt-0-such-as-L-f-x-0-exist-then-lim-t-f-t-e-x-0-t-0-and-x-gt-x-0-L-f-x-exist-L-f-is-the-Laplace-transformed-function

Question Number 75066 by ~blr237~ last updated on 06/Dec/19 $$\mathrm{Prove}\:\:\mathrm{that}\:\mathrm{if}\:\:\mathrm{f}\:\mathrm{is}\:\mathrm{a}\:\mathrm{function}\:\mathbb{R}\rightarrow\mathbb{R}\: \\ $$$$\mathrm{and}\:\:\mathrm{there}\:\mathrm{exist}\:\mathrm{x}_{\mathrm{0}} >\mathrm{0}\:\:,\:\mathrm{such}\:\mathrm{as}\:\:\mathrm{L}\left(\mathrm{f}\right)\left(\mathrm{x}_{\mathrm{0}} \right)\:\mathrm{exist}\: \\ $$$$\mathrm{then}\:\underset{\mathrm{t}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{t}\right)\mathrm{e}^{−\mathrm{x}_{\mathrm{0}} \mathrm{t}} =\mathrm{0}\:\mathrm{and}\:\forall\:\mathrm{x}>\mathrm{x}_{\mathrm{0}} \:\:\mathrm{L}\left(\mathrm{f}\right)\left(\mathrm{x}\right)\:\mathrm{exist}. \\ $$$$\mathrm{L}\left(\mathrm{f}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{Laplace}\:\mathrm{transformed}\:\mathrm{function} \\ $$ Answered…

1-Show-that-for-a-01-the-function-f-a-R-R-defined-by-f-a-x-x-a-is-a-holder-function-in-other-way-there-exist-K-gt-0-such-as-x-y-gt-0-f-a-x-f-a-y-K-x-y-a-

Question Number 75041 by ~blr237~ last updated on 06/Dec/19 $$\left.\mathrm{1}\left.\right)\left.\:\mathrm{Show}\:\mathrm{that}\:\:\mathrm{for}\:\mathrm{a}\in\right]\mathrm{01}\right]\mathrm{the}\:\mathrm{function}\:\:\mathrm{f}_{\mathrm{a}} \::\mathbb{R}_{+} \rightarrow\mathbb{R}\:\mathrm{defined}\:\mathrm{by}\:\mathrm{f}_{\mathrm{a}} \left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{a}} \: \\ $$$$\mathrm{is}\:\:\:\mathrm{a}−\mathrm{holder}\:\mathrm{function}\:\:\mathrm{in}\:\mathrm{other}\:\mathrm{way}\:\:\mathrm{there}\:\mathrm{exist}\:\:\mathrm{K}>\mathrm{0}\:\mathrm{such}\:\mathrm{as}\:\forall\:\mathrm{x},\mathrm{y}>\mathrm{0}\: \\ $$$$\mid\mathrm{f}_{\mathrm{a}} \left(\mathrm{x}\right)−\mathrm{f}_{\mathrm{a}} \left(\mathrm{y}\right)\mid\leqslant\mathrm{K}\mid\mathrm{x}−\mathrm{y}\mid^{\mathrm{a}} \:\: \\ $$$$ \\ $$…

find-the-value-of-d-dx-acos-3-x-3sinx-2-and-it-is-possible-or-not-

Question Number 9491 by Raja Naik last updated on 10/Dec/16 $$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{acos}^{\mathrm{3}} \mathrm{x}}{\mathrm{3sinx}^{\mathrm{2}} \:}\right) \\ $$$$\mathrm{and}\:\mathrm{it}\:\mathrm{is}\:\mathrm{possible}\:\mathrm{or}\:\mathrm{not} \\ $$ Answered by mrW last updated on 11/Dec/16 $$\mathrm{y}=\frac{\mathrm{acos}^{\mathrm{3}}…