Question Number 140294 by solihin last updated on 06/May/21 Answered by Satyendra last updated on 06/May/21 $$\left.{c}\right)\:\mathrm{sin}^{−\mathrm{1}} {y}^{\mathrm{2}} =\mathrm{sin}{h}\left({xy}\right) \\ $$$$\Rightarrow\frac{\mathrm{2}{y}}{\:\sqrt{\mathrm{1}−{y}^{\mathrm{4}} }}\:{y}'=\mathrm{cos}{h}\left({xy}\right) \left({y}+{xy}'\right) \\ $$$$\Rightarrow\frac{\mathrm{2}{y}}{\:\sqrt{\mathrm{1}−{y}^{\mathrm{4}}…
Question Number 140288 by liberty last updated on 06/May/21 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{point}\left(\mathrm{s}\right)\:\mathrm{on}\:\mathrm{the}\:\mathrm{graph} \\ $$$$\mathrm{of}\:\mathrm{3x}^{\mathrm{2}} +\mathrm{10xy}+\mathrm{3y}^{\mathrm{2}} =\mathrm{9}\:\mathrm{closest}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{origin} \\ $$ Answered by mr W last updated on…
Question Number 140270 by liberty last updated on 06/May/21 $$\mathrm{If}\:\left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{4}\right)^{\mathrm{2}} \:=\:\mathrm{25}\:, \\ $$$$\mathrm{what}\:\mathrm{maximum}\:\mathrm{and}\:\mathrm{minimum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{7x}+\mathrm{8y}\:? \\ $$ Answered by EDWIN88 last updated on 06/May/21…
Question Number 74723 by necxxx last updated on 29/Nov/19 $$\mathrm{3}{xy}+{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{5} \\ $$$${find}\:{the}\:{second}\:{derivative} \\ $$ Commented by mathmax by abdo last updated on 29/Nov/19…
Question Number 140249 by ghoku last updated on 05/May/21 $$\underset{\mathrm{0}\:} {\overset{\mathrm{1}} {\int}}\underset{\mathrm{0}\:} {\overset{\mathrm{2}} {\int}}\left({k}\overset{\mathrm{2}} {{z}}+{y}\right){dxdy}=\mathrm{9}\:{k}=?? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 140216 by 676597498 last updated on 05/May/21 $${solve}\:{the}\:{differential}\:{equation} \\ $$$$\left({y}+\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right){dx}−{xdy}=\mathrm{0} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 9113 by hmhjkk last updated on 19/Nov/16 $$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{2}} /\mathrm{x}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$ Commented by sou1618 last updated on 19/Nov/16 $$\int_{\mathrm{0}} ^{\mathrm{1}}…
Question Number 9109 by tawakalitu last updated on 18/Nov/16 $$\mathrm{if}\:\:\:\mathrm{y}\:=\:\mathrm{x}^{\mathrm{log}_{\mathrm{a}} \mathrm{xy}} \\ $$$$\mathrm{find}\:\:\frac{\mathrm{dy}}{\mathrm{dx}} \\ $$ Answered by mrW last updated on 19/Nov/16 $${y}={x}^{{log}_{{a}} {xy}} \\…
Question Number 9086 by tawakalitu last updated on 17/Nov/16 $$\mathrm{Prove}\:\mathrm{the}\:\mathrm{limit}.,\:\:\:\frac{\mathrm{sin}\left(\theta/\mathrm{2}\right)}{\left(\theta/\mathrm{2}\right)}\:=\:\mathrm{1} \\ $$ Commented by 123456 last updated on 17/Nov/16 $$\underset{\theta\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\theta/\mathrm{2}}{\theta/\mathrm{2}}=\underset{\alpha\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\alpha}{\alpha} \\ $$$$\alpha=\theta/\mathrm{2} \\…
Question Number 74601 by ~blr237~ last updated on 27/Nov/19 $${solve}\:\:\:{y}''+\:{a}\left({x}\right){y}={b}\left({x}\right)\: \\ $$$${the}\:\:{general}\:\:{form}\:{of}\:\:{the}\:{solution}\:{if}\:\:{possible} \\ $$$${or}\:\:{juzt}\:{a}\:{solving}\:{metbod} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com