Menu Close

Category: Differentiation

Prove-the-limit-sin-2-2-1-

Question Number 9086 by tawakalitu last updated on 17/Nov/16 $$\mathrm{Prove}\:\mathrm{the}\:\mathrm{limit}.,\:\:\:\frac{\mathrm{sin}\left(\theta/\mathrm{2}\right)}{\left(\theta/\mathrm{2}\right)}\:=\:\mathrm{1} \\ $$ Commented by 123456 last updated on 17/Nov/16 $$\underset{\theta\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\theta/\mathrm{2}}{\theta/\mathrm{2}}=\underset{\alpha\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\alpha}{\alpha} \\ $$$$\alpha=\theta/\mathrm{2} \\…

Find-the-nth-derivative-of-sin-2-2x-

Question Number 8996 by Basant007 last updated on 11/Nov/16 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{nth}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{sin}\:^{\mathrm{2}} \mathrm{2x} \\ $$ Commented by FilupSmith last updated on 13/Nov/16 $${y}=\mathrm{sin}^{\mathrm{2}} \left(\mathrm{2}{x}\right) \\ $$$${u}=\mathrm{sin}\left(\mathrm{2}{x}\right)\:\Rightarrow\:{du}=\mathrm{2cos}\left(\mathrm{2}{x}\right){dx} \\…

prove-that-0-1-e-x-1-e-2x-dx-x-ln-2-1-4-4-2pi-n-1-2n-1-2n-1-n-1-e-

Question Number 140055 by mnjuly1970 last updated on 03/May/21 $$\:\:\:\:\:\: \\ $$$$\:\:{prove}\:\:{that}\:: \\ $$$$\:\:\:\:\:\:\:\:\Omega:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}−{e}^{−{x}} }{\mathrm{1}+{e}^{\mathrm{2}{x}} }\:.\frac{{dx}}{{x}}\:={ln}\left(\frac{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}\sqrt{\mathrm{2}\pi}}\:\right) \\ $$$$\:\Theta:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}{n}}\right)^{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} } \overset{??}…

nice-calculus-I-lim-x-0-cos-x-1-3-cot-x-solution-sin-x-x-x-0-

Question Number 139949 by mnjuly1970 last updated on 02/May/21 $$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:………{nice}\:….\:\ast\:….\ast\:….\:\ast\:….{calculus}\left({I}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\:\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \left(\sqrt[{\mathrm{3}}]{{cos}\left(\sqrt{{x}}\:\right.}\:\right)^{{cot}\left({x}\right)} =?? \\ $$$$\:\:\:\:\:\:\:\:{solution}……… \\ $$$$\:\:\:\:\:\:\:{sin}\left({x}\right)\:\approx\:{x}\:\:\:\:\:\:\:\:\left({x}\:\rightarrow\:\mathrm{0}\:\right) \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}:=\:\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \left\{\left({cos}\left(\sqrt{{x}}\:\right)\right)^{\frac{\mathrm{1}}{\mathrm{3}}}…