Question Number 138883 by mnjuly1970 last updated on 19/Apr/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 138851 by bramlexs22 last updated on 19/Apr/21 $${Find}\:{max}\:{value}\:{of}\: \\ $$$${x}^{\mathrm{2}} −\mathrm{3}{xy}−\mathrm{2}{y}^{\mathrm{2}} \:{subject}\:{to}\: \\ $$$${x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} =\mathrm{1}. \\ $$ Answered by ajfour last updated…
Question Number 138823 by mnjuly1970 last updated on 18/Apr/21 $$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:……\mathscr{N}{ice}\:\:…\:\mathscr{C}{alculus}…… \\ $$$$\:\:\:\:\:\:\:\mathscr{E}{valuate}::\:\:\:\:\:\boldsymbol{\phi}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{}=? \\ $$ Answered by qaz last updated on 18/Apr/21…
Question Number 138821 by mnjuly1970 last updated on 18/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…….\:{nice}\:..\:..\:..\:{calculus}…… \\ $$$${find}\:{the}\:{value}\:{of}: \\ $$$$\:\:\:\:\:\:\:\:\:\Theta=\underset{{n}=−\infty\:} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{6}{n}^{\mathrm{2}} +\mathrm{5}{n}+\mathrm{1}}=? \\ $$$$ \\ $$ Commented by Kamel last…
Question Number 138797 by bramlexs22 last updated on 18/Apr/21 $${Let}\:{a},{b},{c}\:{be}\:{positive}\:{constants}. \\ $$$${Among}\:{all}\:{real}\:{number}\:{x}\:{and}\:{y}\: \\ $$$${satisfying}\:{ax}+{by}={c}\:,\:{find}\:{the} \\ $$$${maximum}\:{value}\:{of}\:{product} \\ $$$${xy}. \\ $$ Answered by TheSupreme last updated…
Question Number 73203 by Tanmay chaudhury last updated on 08/Nov/19 Commented by kaivan.ahmadi last updated on 08/Nov/19 $${xsin}\frac{\mathrm{1}}{{x}}=\mathrm{1}\Rightarrow{sin}\frac{\mathrm{1}}{{x}}=\frac{\mathrm{1}}{{x}}\Rightarrow\frac{\mathrm{1}}{{x}}=\mathrm{0}\Rightarrow{there}\:{is}\:{no}\:{root} \\ $$$${so}\:{A}\:{has}\:{exactly}\:{one}\:{element},\:{A}=\left\{\mathrm{0}\right\} \\ $$ Terms of Service…
Question Number 138552 by mnjuly1970 last updated on 14/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:\:\:\:\:\:\:{mathemayics}\:… \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({tan}\left({x}\right)\right)}{{x}}{dx}=\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{{e}}\right) \\ $$$$\:\:……. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 7401 by txsnims last updated on 27/Aug/16 $${find}\:{the}\:{turning}\:{point}\:{on}\:{the}\:{curve}\:{y}=\frac{\mathrm{16}}{{x}}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}\:}\:\:{and}\:{determine}\:{wether}\:{it}\:{is}\:{a}\:{point}\:{of}\:{maximum}\:{or}\:{minimum} \\ $$$$ \\ $$ Answered by FilupSmith last updated on 27/Aug/16 $${y}=\mathrm{16}{x}^{−\mathrm{1}} +\mathrm{3}^{−\mathrm{1}} {x}^{\mathrm{3}}…
Question Number 72908 by mathmax by abdo last updated on 04/Nov/19 $${find}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{d}\theta}{{x}^{\mathrm{2}} −\mathrm{2}{x}\:{cos}\theta\:+\mathrm{1}}\:\:{with}\:{x}\:{real}. \\ $$ Commented by mind is power last updated on…
Question Number 72884 by mhmd last updated on 04/Nov/19 $${find}\:{the}\:{area}\:{of}\:{the}\:{region}\:{bounded}\:{by}\:{the}\:{semicircle}\:{y}=\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }\:{and}\:{the}\:{x}=+−{a}\:\:{and}\:{the}\:{line}\:{y}=−{a}\:?\:{by}\:{using}\:{intigiral} \\ $$$${pleas}\:{sir}\:{help}\:{me} \\ $$ Commented by kaivan.ahmadi last updated on 04/Nov/19 $$\int_{−{a}} ^{{a}}…