Menu Close

Category: Differentiation

Let-a-b-c-be-positive-constants-Among-all-real-number-x-and-y-satisfying-ax-by-c-find-the-maximum-value-of-product-xy-

Question Number 138797 by bramlexs22 last updated on 18/Apr/21 $${Let}\:{a},{b},{c}\:{be}\:{positive}\:{constants}. \\ $$$${Among}\:{all}\:{real}\:{number}\:{x}\:{and}\:{y}\: \\ $$$${satisfying}\:{ax}+{by}={c}\:,\:{find}\:{the} \\ $$$${maximum}\:{value}\:{of}\:{product} \\ $$$${xy}. \\ $$ Answered by TheSupreme last updated…

Question-73203

Question Number 73203 by Tanmay chaudhury last updated on 08/Nov/19 Commented by kaivan.ahmadi last updated on 08/Nov/19 $${xsin}\frac{\mathrm{1}}{{x}}=\mathrm{1}\Rightarrow{sin}\frac{\mathrm{1}}{{x}}=\frac{\mathrm{1}}{{x}}\Rightarrow\frac{\mathrm{1}}{{x}}=\mathrm{0}\Rightarrow{there}\:{is}\:{no}\:{root} \\ $$$${so}\:{A}\:{has}\:{exactly}\:{one}\:{element},\:{A}=\left\{\mathrm{0}\right\} \\ $$ Terms of Service…

nice-mathemayics-0-sin-tan-x-x-dx-pi-2-1-1-e-

Question Number 138552 by mnjuly1970 last updated on 14/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:\:\:\:\:\:\:{mathemayics}\:… \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({tan}\left({x}\right)\right)}{{x}}{dx}=\frac{\pi}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{{e}}\right) \\ $$$$\:\:……. \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

find-the-turning-point-on-the-curve-y-16-x-x-3-3-and-determine-wether-it-is-a-point-of-maximum-or-minimum-

Question Number 7401 by txsnims last updated on 27/Aug/16 $${find}\:{the}\:{turning}\:{point}\:{on}\:{the}\:{curve}\:{y}=\frac{\mathrm{16}}{{x}}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}\:}\:\:{and}\:{determine}\:{wether}\:{it}\:{is}\:{a}\:{point}\:{of}\:{maximum}\:{or}\:{minimum} \\ $$$$ \\ $$ Answered by FilupSmith last updated on 27/Aug/16 $${y}=\mathrm{16}{x}^{−\mathrm{1}} +\mathrm{3}^{−\mathrm{1}} {x}^{\mathrm{3}}…

find-the-area-of-the-region-bounded-by-the-semicircle-y-a-2-x-2-and-the-x-a-and-the-line-y-a-by-using-intigiral-pleas-sir-help-me-

Question Number 72884 by mhmd last updated on 04/Nov/19 $${find}\:{the}\:{area}\:{of}\:{the}\:{region}\:{bounded}\:{by}\:{the}\:{semicircle}\:{y}=\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }\:{and}\:{the}\:{x}=+−{a}\:\:{and}\:{the}\:{line}\:{y}=−{a}\:?\:{by}\:{using}\:{intigiral} \\ $$$${pleas}\:{sir}\:{help}\:{me} \\ $$ Commented by kaivan.ahmadi last updated on 04/Nov/19 $$\int_{−{a}} ^{{a}}…