Question Number 7401 by txsnims last updated on 27/Aug/16 $${find}\:{the}\:{turning}\:{point}\:{on}\:{the}\:{curve}\:{y}=\frac{\mathrm{16}}{{x}}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}\:}\:\:{and}\:{determine}\:{wether}\:{it}\:{is}\:{a}\:{point}\:{of}\:{maximum}\:{or}\:{minimum} \\ $$$$ \\ $$ Answered by FilupSmith last updated on 27/Aug/16 $${y}=\mathrm{16}{x}^{−\mathrm{1}} +\mathrm{3}^{−\mathrm{1}} {x}^{\mathrm{3}}…
Question Number 72908 by mathmax by abdo last updated on 04/Nov/19 $${find}\:\int_{\mathrm{0}} ^{\pi} \:\:\frac{{d}\theta}{{x}^{\mathrm{2}} −\mathrm{2}{x}\:{cos}\theta\:+\mathrm{1}}\:\:{with}\:{x}\:{real}. \\ $$ Commented by mind is power last updated on…
Question Number 72884 by mhmd last updated on 04/Nov/19 $${find}\:{the}\:{area}\:{of}\:{the}\:{region}\:{bounded}\:{by}\:{the}\:{semicircle}\:{y}=\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }\:{and}\:{the}\:{x}=+−{a}\:\:{and}\:{the}\:{line}\:{y}=−{a}\:?\:{by}\:{using}\:{intigiral} \\ $$$${pleas}\:{sir}\:{help}\:{me} \\ $$ Commented by kaivan.ahmadi last updated on 04/Nov/19 $$\int_{−{a}} ^{{a}}…
Question Number 72886 by mhmd last updated on 04/Nov/19 $${let}\:{w}={f}\left({x},\:{y}\right)\:{be}\:{a}\:{differentiable}\:{function}\:{where}\:{x}={rcos}\theta\:{and}\:{y}={rsin}\theta\:{show}\:{that}\:\left({f}_{{x}} \right)^{\mathrm{2}} +\left({f}_{{y}} \right)^{\mathrm{2}} =\left({w}_{{x}} \right)^{\mathrm{2}} +\mathrm{1}/{r}^{\mathrm{2}} \left({w}_{{y}} \right)^{\mathrm{2}} ? \\ $$$${help}\:{me}\:{sir}\: \\ $$ Answered by…
Question Number 72880 by mhmd last updated on 04/Nov/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 72883 by mhmd last updated on 04/Nov/19 $${if}\:{w}={f}\left({u}\:{and}\:{v}\right)\:{where}\:{f}_{{uu}} +{f}_{{vv}} =\mathrm{0}\:{and}\:{u}=\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)/\mathrm{2}\:{and}\:{v}={xy}\:{show}\:{that}\:{w}_{{xx}} +{w}_{{yy}} =\mathrm{0}\:? \\ $$$${pleas}\:{sir}\:{help}\:{me} \\ $$ Answered by mind is power…
Question Number 72877 by mhmd last updated on 04/Nov/19 $${by}\:{using}\:{theorem}\:{demwover}\:{find}\:\:{x}^{\mathrm{4}} =\mathrm{1}? \\ $$$${pleas}\:{sir}\:{help}\:{me} \\ $$ Commented by mathmax by abdo last updated on 04/Nov/19 $${roots}\:{at}\:{C}\:\:\:\:{x}={z}={r}\:{e}^{{i}\theta}…
Question Number 138377 by mnjuly1970 last updated on 13/Apr/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:……\:{advanced}\:…\:…\:…\:{calculus}…… \\ $$$$\:\:\:{evaluate}:::: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{ln}\left({x}\right)}{\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{2}} }\:.\left(\mathrm{2}+{x}\right)}\:{dx}=?? \\ $$$$\:\: \\ $$ Terms of…
Question Number 7294 by Tawakalitu. last updated on 21/Aug/16 $${If}\:{a}\:{polynomial}\:{p}\left({x}\right)\:{satisfies}\:{the}\:{identity} \\ $$$$ \\ $$$${x}^{\mathrm{2015}} \:+\:{x}^{\mathrm{2014}} \:+\:{x}^{\mathrm{2013}} \:+\:\mathrm{1}\:=\:\left({x}^{\mathrm{3}} \:+\:{x}^{\mathrm{2}} \:+\:{x}\:+\:\mathrm{1}\right){p}\left({x}\right) \\ $$$$ \\ $$$${Find}\:\:{p}\left(−\mathrm{1}\right) \\ $$…
Question Number 72823 by Raxreedoroid last updated on 03/Nov/19 $$\mathrm{What}\:\mathrm{is}\:\mathrm{derivative}\:\mathrm{for}\:\mathrm{this}\:\mathrm{function} \\ $$$$\: \\ $$$${a}×{b}^{{x}−\mathrm{1}} ×{c}^{\frac{\mathrm{1}}{\mathrm{2}}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)} ×{d}^{\frac{\mathrm{1}}{\mathrm{6}}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)\left({x}−\mathrm{3}\right)} \\ $$ Answered by mind is power last updated…