Menu Close

Category: Differentiation

let-f-U-R-n-R-p-be-an-application-where-U-is-an-open-set-prove-that-x-U-h-R-n-such-as-x-h-U-

Question Number 71548 by Cmr 237 last updated on 17/Oct/19 $$\mathrm{let}\:\mathrm{f}:\boldsymbol{\mathrm{U}}\subset\mathbb{R}^{\mathrm{n}} \rightarrow\mathbb{R}^{\mathrm{p}} \:\mathrm{be}\:\mathrm{an}\:\mathrm{application} \\ $$$$\mathrm{where}\:\boldsymbol{\mathrm{U}}\:\mathrm{is}\:\mathrm{an}\:\mathrm{open}\:\mathrm{set} \\ $$$$\mathrm{prove}\:\mathrm{that}\:\forall\mathrm{x}\in\boldsymbol{{U}},\exists\mathrm{h}\in\mathbb{R}^{\mathrm{n}} \mathrm{such}\:\mathrm{as} \\ $$$$\mathrm{x}+\mathrm{h}\in\boldsymbol{{U}} \\ $$ Answered by mind…

montrer-que-a-b-R-ona-2-ab-a-2-b-2-Endeduire-que-x-1-x-n-R-on-a-i-1-n-x-i-2-n-i-1-n-x-i-2-please-i-need-help-

Question Number 71508 by Cmr 237 last updated on 16/Oct/19 $$\mathrm{montrer}\:\mathrm{que}:\forall\mathrm{a},\mathrm{b}\in\mathbb{R}\:\mathrm{ona} \\ $$$$\mathrm{2}\mid\mathrm{ab}\mid\leqslant\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} \\ $$$$\mathrm{Endeduire}\:\mathrm{que}\:\forall\mathrm{x}_{\mathrm{1}} ,…,\mathrm{x}_{\mathrm{n}} \in\mathbb{R}\:\mathrm{on}\:\mathrm{a}: \\ $$$$\left(\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mid\mathrm{x}_{\mathrm{i}} \mid\right)^{\mathrm{2}} \leqslant\mathrm{n}\underset{\mathrm{i}=\mathrm{1}} {\overset{\mathrm{n}}…

Differentiate-cosh-1-x-2-1-dy-dx-if-the-given-function-is-y-sinh-1-coth-x-2-Please-help-

Question Number 5873 by sanusihammed last updated on 02/Jun/16 $${Differentiate}\:\:\:{cosh}^{−\mathrm{1}} \left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\:\frac{{dy}}{{dx}}.\:\:\:{if}\:{the}\:{given}\:{function}\:{is}\: \\ $$$${y}\:=\:{sinh}^{−\mathrm{1}} \left[{coth}\left({x}^{\mathrm{2}} \right)\right] \\ $$$$ \\ $$$${Please}\:{help}. \\ $$ Terms of Service…

Solve-integral-of-sec-x-dx-given-that-t-tan-x-2-

Question Number 5866 by sanusihammed last updated on 02/Jun/16 $${Solve}\:{integral}\:{of}\:\:\:{sec}\left({x}\right){dx}\:\:.\:\:{given}\:{that}\:\:{t}\:=\:{tan}\left(\frac{{x}}{\mathrm{2}}\right) \\ $$ Answered by Yozzii last updated on 02/Jun/16 $${Let}\:{t}={tan}\mathrm{0}.\mathrm{5}{x}\Rightarrow{dt}=\mathrm{0}.\mathrm{5}{sec}^{\mathrm{2}} \mathrm{0}.\mathrm{5}{xdx} \\ $$$${dx}=\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\…

Question-71371

Question Number 71371 by rajesh4661kumar@gmail.com last updated on 14/Oct/19 Commented by prakash jain last updated on 15/Oct/19 $${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}{y}−\mathrm{23}=\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\left({y}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{25} \\…