Question Number 4993 by love math last updated on 29/Mar/16 $${f}\left({x}\right)=\frac{{x}\:{ln}\:{x}}{\mathrm{1}+\:{e}^{{x}} } \\ $$$$ \\ $$$${f}\:'\left({x}\right)\:−\:? \\ $$ Answered by FilupSmith last updated on 30/Mar/16…
Question Number 4992 by love math last updated on 29/Mar/16 $${f}\left({x}\right)=\mathrm{2}{x}\:{e}^{{x}} \\ $$$${f}\:'\left({x}\right)\:−? \\ $$ Answered by FilupSmith last updated on 29/Mar/16 $${f}\left({x}\right)={uv} \\ $$$${f}\left({x}\right)={uv}'+{u}'{v}…
Question Number 136006 by liberty last updated on 17/Mar/21 $$ \\ $$What are the dimensions of the rectangle of maximum area that can be inscribed…
Question Number 4925 by sanusihammed last updated on 22/Mar/16 $${If}\:{y}\:=\:\left({secx}\:+\:{tanx}\right)^{{p}} \:.\:{where}\:{p}\:{is}\:{a}\:{constant}\: \\ $$$${prove}\:{that}\:\:\:\:{cosx}\:{dy}/{dx}\:−\:{py}\:=\:\mathrm{0} \\ $$$$ \\ $$ Answered by prakash jain last updated on 22/Mar/16…
Question Number 135944 by mnjuly1970 last updated on 17/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:…..{nice}\:\:{calculus}… \\ $$$$\:\:\:{prove}\:{that}: \\ $$$$\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\sqrt{\mathrm{2}}\:−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{2}}\:\right)… \\ $$$$\:\:\:\:…………….\checkmark \\ $$ Answered…
Question Number 135935 by Engr_Jidda last updated on 17/Mar/21 $${If}\:\:{v}={r}^{{m}} \:{where}\:{r}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:}\:,\:{show}\:{that} \\ $$$$\frac{\partial^{\mathrm{2}} {v}}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {v}}{\partial{y}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {v}}{\partial{z}^{\mathrm{2}} }={m}\left({m}−\mathrm{1}\right){r}^{{m}−\mathrm{2}} \\ $$ Answered…
Question Number 135929 by Engr_Jidda last updated on 17/Mar/21 $${Verify}\:{that}\:{the}\:{following}\:{functions}\:{satisfies} \\ $$$${the}\:{mean}\:{value}\:{theorem}. \\ $$$$\left(\mathrm{1}\right)\:\:\:{f}\left({x}\right)\:=\frac{{x}}{{x}^{\mathrm{2}} −{x}}\:\:\:{at}\:\left[−\mathrm{2},−\mathrm{1}\right] \\ $$$$\left(\mathrm{2}\right)\:\:{f}\left({x}\right)={x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{4}\:\:\:{at}\left[−\mathrm{2},\mathrm{2}\right] \\ $$ Terms of Service Privacy…
Question Number 135930 by Engr_Jidda last updated on 17/Mar/21 $${Given}\:{that}\:{f}\left({x}\right)=\:\mathrm{3}{x}−\mathrm{2}\:{and}\:{g}\left({x}\right)=\frac{{x}}{{x}−\mathrm{1}} \\ $$$${find}\:{the}\:{domain}\:{and}\:{range}\:{of}\:{the}\:{following}. \\ $$$$\left(\mathrm{1}\right)\:{f}^{−\mathrm{1}} \bullet{g}\bullet{g}^{−\mathrm{1}} \bullet{f}\:\:\:\:\:\left(\mathrm{2}\right)\:\left[{f}\left({g}\left({x}\right)\right)\right]^{−\mathrm{1}} \\ $$ Answered by dhgt last updated on 04/May/21…
Question Number 135925 by liberty last updated on 17/Mar/21 $${minimum}\:{value}\:{of}\:\sqrt{\left({x}+\mathrm{6}\right)^{\mathrm{2}} +\mathrm{25}}\:+\sqrt{\left({x}−\mathrm{6}\right)^{\mathrm{2}} +\mathrm{121}} \\ $$$${equal}\:{to}? \\ $$ Answered by john_santu last updated on 17/Mar/21 $$\:{Minimum}\:{value}\:{of}\: \\…
Question Number 4739 by shashi kashyap last updated on 04/Mar/16 Answered by 123456 last updated on 04/Mar/16 $${x}^{\mathrm{2}} −{xy}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} +\mathrm{2}=\mathrm{0} \\ $$$$\left(\mathrm{3}−{x}\right){y}^{\mathrm{2}} =−{x}^{\mathrm{2}} −\mathrm{2}…