Menu Close

Category: Differentiation

nice-calculus-prove-that-n-0-2-1-n-2n-1-2-pi-2-8-1-2-ln-2-1-2-

Question Number 135944 by mnjuly1970 last updated on 17/Mar/21 $$\:\:\:\:\:\:\:\:\:\:\:…..{nice}\:\:{calculus}… \\ $$$$\:\:\:{prove}\:{that}: \\ $$$$\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\sqrt{\mathrm{2}}\:−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{2}}{ln}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{2}}\:\right)… \\ $$$$\:\:\:\:…………….\checkmark \\ $$ Answered…

If-v-r-m-where-r-x-2-y-2-z-2-show-that-2-v-x-2-2-v-y-2-2-v-z-2-m-m-1-r-m-2-

Question Number 135935 by Engr_Jidda last updated on 17/Mar/21 $${If}\:\:{v}={r}^{{m}} \:{where}\:{r}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:}\:,\:{show}\:{that} \\ $$$$\frac{\partial^{\mathrm{2}} {v}}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {v}}{\partial{y}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {v}}{\partial{z}^{\mathrm{2}} }={m}\left({m}−\mathrm{1}\right){r}^{{m}−\mathrm{2}} \\ $$ Answered…

Verify-that-the-following-functions-satisfies-the-mean-value-theorem-1-f-x-x-x-2-x-at-2-1-2-f-x-x-3-4x-2-2x-4-at-2-2-

Question Number 135929 by Engr_Jidda last updated on 17/Mar/21 $${Verify}\:{that}\:{the}\:{following}\:{functions}\:{satisfies} \\ $$$${the}\:{mean}\:{value}\:{theorem}. \\ $$$$\left(\mathrm{1}\right)\:\:\:{f}\left({x}\right)\:=\frac{{x}}{{x}^{\mathrm{2}} −{x}}\:\:\:{at}\:\left[−\mathrm{2},−\mathrm{1}\right] \\ $$$$\left(\mathrm{2}\right)\:\:{f}\left({x}\right)={x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{4}\:\:\:{at}\left[−\mathrm{2},\mathrm{2}\right] \\ $$ Terms of Service Privacy…

Given-that-f-x-3x-2-and-g-x-x-x-1-find-the-domain-and-range-of-the-following-1-f-1-g-g-1-f-2-f-g-x-1-

Question Number 135930 by Engr_Jidda last updated on 17/Mar/21 $${Given}\:{that}\:{f}\left({x}\right)=\:\mathrm{3}{x}−\mathrm{2}\:{and}\:{g}\left({x}\right)=\frac{{x}}{{x}−\mathrm{1}} \\ $$$${find}\:{the}\:{domain}\:{and}\:{range}\:{of}\:{the}\:{following}. \\ $$$$\left(\mathrm{1}\right)\:{f}^{−\mathrm{1}} \bullet{g}\bullet{g}^{−\mathrm{1}} \bullet{f}\:\:\:\:\:\left(\mathrm{2}\right)\:\left[{f}\left({g}\left({x}\right)\right)\right]^{−\mathrm{1}} \\ $$ Answered by dhgt last updated on 04/May/21…