Question Number 68270 by ~ À ® @ 237 ~ last updated on 08/Sep/19 $$\:{Prove}\:{that}\:\:{if}\:\:{Li}_{\mathrm{2}} \left({x}\right)=\underset{{n}=\mathrm{1}} {\sum}\:\frac{{x}^{{n}} }{{n}^{\mathrm{2}} }\:\:\:{then} \\ $$$$\forall\:{x}\:\:{Li}_{\mathrm{2}} \left({x}\right)+{Li}_{\mathrm{2}} \left(\mathrm{1}−{x}\right)\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−{ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right)\:\: \\…
Question Number 68257 by ~ À ® @ 237 ~ last updated on 07/Sep/19 $$\:\:{Prove}\:{that}\:\:\frac{\mathrm{6}}{\mathrm{673}}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} \begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix}}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{2019}}\: \\ $$ Terms of Service Privacy…
Question Number 68232 by mhmd last updated on 07/Sep/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 68188 by mhmd last updated on 06/Sep/19 $$\sum_{{n}=\mathrm{3}} ^{\propto} \:\mathrm{1}/{n}\left({ln}\:{n}\right)^{\mathrm{2}} \:\:\:{is}\:{the}\:{function}\:{converg}\:{or}\:{diverg}\:?\:{pleas}\:{help}\:{me} \\ $$ Commented by Abdo msup. last updated on 07/Sep/19 $${let}\:\varphi\left({x}\right)\:=\frac{\mathrm{1}}{{x}\left({lnx}\right)^{\mathrm{2}} }\:\:{with}\:\:{x}\geqslant\mathrm{3}\:\:{we}\:{have}…
Question Number 133688 by mnjuly1970 last updated on 23/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:#\:\:\:{calculus}\:# \\ $$$$\:\:\:\:\:\:\:{find}:\: \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{dx}}{{sin}^{\mathrm{10}} \left({x}\right)+{cos}^{\mathrm{10}} \left({x}\right)}\:=??? \\ $$$$ \\ $$ Answered by Ar…
Question Number 68096 by mhmd last updated on 04/Sep/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 133616 by benjo_mathlover last updated on 23/Feb/21 $$\mathrm{Suppose}\:\mathrm{function}\:\mathrm{f}:\mathrm{R}\rightarrow\mathrm{R}\:\mathrm{with} \\ $$$$\mathrm{f}\left(\mathrm{2x}−\mathrm{3}\right)\:=\:\mathrm{4x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{5}\:\mathrm{and}\:\mathrm{f}\:'\:\mathrm{denote} \\ $$$$\mathrm{is}\:\mathrm{derivatif}\:\mathrm{of}\:\mathrm{f}\:\mathrm{function}. \\ $$$$\mathrm{What}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{f}\:'\left(\mathrm{2x}−\mathrm{3}\right) \\ $$ Commented by mr W last updated…
Question Number 133610 by benjo_mathlover last updated on 23/Feb/21 $$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mid\mathrm{tan}\:\mathrm{x}\mid\:,\:\mathrm{find}\: \\ $$$$\:\frac{\mathrm{df}\left(\mathrm{x}\right)}{\mathrm{dx}}\mid_{\mathrm{x}=\mathrm{k}} \:\mathrm{where}\:\frac{\pi}{\mathrm{2}}<\mathrm{k}<\pi \\ $$ Answered by guyyy last updated on 23/Feb/21 Answered by liberty…
Question Number 68068 by mhmd last updated on 04/Sep/19 $${find}\:{e}^{\mathrm{1}/{ln}\mathrm{2}} \:\:=? \\ $$ Commented by peter frank last updated on 04/Sep/19 $${e}^{{x}} =\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{4}}…
Question Number 133589 by benjo_mathlover last updated on 23/Feb/21 $$\mathrm{For}\:\mathrm{all}\:\mathrm{real}\:\mathrm{number}\:\mathrm{f}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\: \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{e}^{\mathrm{x}} \:+\:\mathrm{m}\:\mathrm{sin}\:\mathrm{x}\:,\:\mathrm{if}\:\mathrm{x}\:<\:\mathrm{0}}\\{\mathrm{n}\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} +\:\mathrm{x}−\mathrm{2}\:,\:\mathrm{if}\:\mathrm{x}\geqslant\mathrm{0}}\end{cases} \\ $$$$\mathrm{what}\:\mathrm{the}\:\mathrm{value}\:\mathrm{m}\:\mathrm{and}\:\mathrm{n}\:\mathrm{is}\:\mathrm{f}\: \\ $$$$\mathrm{differentiable}\:\mathrm{at}\:\mathrm{x}\:=\:\mathrm{0}\:? \\ $$ Answered by benjo_mathlover last updated…