Question Number 133610 by benjo_mathlover last updated on 23/Feb/21 $$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mid\mathrm{tan}\:\mathrm{x}\mid\:,\:\mathrm{find}\: \\ $$$$\:\frac{\mathrm{df}\left(\mathrm{x}\right)}{\mathrm{dx}}\mid_{\mathrm{x}=\mathrm{k}} \:\mathrm{where}\:\frac{\pi}{\mathrm{2}}<\mathrm{k}<\pi \\ $$ Answered by guyyy last updated on 23/Feb/21 Answered by liberty…
Question Number 68068 by mhmd last updated on 04/Sep/19 $${find}\:{e}^{\mathrm{1}/{ln}\mathrm{2}} \:\:=? \\ $$ Commented by peter frank last updated on 04/Sep/19 $${e}^{{x}} =\mathrm{1}+{x}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}!}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{4}}…
Question Number 133589 by benjo_mathlover last updated on 23/Feb/21 $$\mathrm{For}\:\mathrm{all}\:\mathrm{real}\:\mathrm{number}\:\mathrm{f}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\: \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)=\begin{cases}{\mathrm{e}^{\mathrm{x}} \:+\:\mathrm{m}\:\mathrm{sin}\:\mathrm{x}\:,\:\mathrm{if}\:\mathrm{x}\:<\:\mathrm{0}}\\{\mathrm{n}\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} +\:\mathrm{x}−\mathrm{2}\:,\:\mathrm{if}\:\mathrm{x}\geqslant\mathrm{0}}\end{cases} \\ $$$$\mathrm{what}\:\mathrm{the}\:\mathrm{value}\:\mathrm{m}\:\mathrm{and}\:\mathrm{n}\:\mathrm{is}\:\mathrm{f}\: \\ $$$$\mathrm{differentiable}\:\mathrm{at}\:\mathrm{x}\:=\:\mathrm{0}\:? \\ $$ Answered by benjo_mathlover last updated…
Question Number 2484 by John_Haha last updated on 21/Nov/15 $${find}\:{dy}/{dx}\:{of}\:{ln}\left({sechx}+{lnlnx}\right) \\ $$ Answered by Filup last updated on 21/Nov/15 $${y}=\mathrm{ln}\left(\mathrm{sech}\left({x}\right)+\mathrm{ln}\left(\mathrm{ln}\left({x}\right)\right)\right) \\ $$$$ \\ $$$$\frac{{dy}}{{dx}}=\frac{{d}\left(\mathrm{ln}\left(\mathrm{u}\right)\right)}{\mathrm{d}{x}}\:\frac{{du}}{{dx}}\:\:\:\:\:\:\:\:\:\left({chain}\:{rule}\right) \\…
Question Number 67960 by aseer imad last updated on 02/Sep/19 $$\frac{{d}}{{dx}}\left[{tan}^{−\mathrm{1}} \frac{\mathrm{4}{x}}{\:\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }}\right] \\ $$$${or} \\ $$$$\frac{{d}}{{dx}}{tan}^{−\mathrm{1}} \left(\mathrm{2}{tan}\theta\right)\:\:\:\:\:\:\:\left[{where}\:\mathrm{2}{x}={sin}\theta\:\right] \\ $$$$\:\:\:{which}\:{comes}\:{later}\:{if}\:{done}\:{considering} \\ $$$$\mathrm{2}{x}={sin}\theta \\ $$$${please}\:{help} \\…
Question Number 67946 by Cmr 237 last updated on 02/Sep/19 $$\mathrm{use}\:\boldsymbol{\mathrm{Green}}−\boldsymbol{\mathrm{Riemann}}\:\boldsymbol{\mathrm{formuler}} \\ $$$$\mathrm{to}\:\mathrm{determined}: \\ $$$$\boldsymbol{\mathrm{I}}=\int\int_{\boldsymbol{\mathrm{D}}} \boldsymbol{\mathrm{xy}}\mathrm{dxdy} \\ $$$$\boldsymbol{\mathrm{D}}=\left\{\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{R}^{\mathrm{2}} \mid\mathrm{x}\geqslant\mathrm{0};\mathrm{y}\geqslant;\mathrm{x}+{y}\leqslant\mathrm{1}\right\} \\ $$ Commented by mathmax by…
Question Number 67943 by mhmd last updated on 02/Sep/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 67920 by mhmd last updated on 02/Sep/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 133334 by mnjuly1970 last updated on 21/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{nice}\:\:\:\:\:\:{calculus}… \\ $$$$\:{prove}\:\:{that}:: \\ $$$$\:\:\:\boldsymbol{\phi}=\int_{−\infty} ^{\:+\infty} \frac{\:{cosh}\left({px}\right)}{{cosh}\left({x}\right)}\:=\:\frac{\pi}{{cos}\left(\frac{\pi{p}}{\mathrm{2}}\right)} \\ $$$$ \\ $$ Answered by mnjuly1970 last updated…
Question Number 2229 by tabrez8590@gmail last updated on 09/Nov/15 $${f}\left({x}\right)={x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{10} \\ $$$$\Rightarrow{f}^{'} \left({x}\right)=\mathrm{2}{x}+\mathrm{3}\:{and} \\ $$$${f}^{'} \left(\mathrm{1}\right)=\mathrm{5}\:{what}\:{indicate}\:{these}\:{vslue}\: \\ $$$${f}'\left({x}\right){andf}'\left(\mathrm{1}\right)\:{in}\:{geometrical}\:{meaning} \\ $$ Answered by prakash jain…