Menu Close

Category: Differentiation

if-0-1-ln-1-2-x-x-1-2-2-x-2-x-2-1-dx-find-Re-Im-

Question Number 127839 by mnjuly1970 last updated on 02/Jan/21 $$\:\:\: \\ $$$${if}\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}−{x}\right)\Gamma\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{2}−\frac{{x}}{\mathrm{2}}\right)\left(\frac{{x}}{\mathrm{2}}−\mathrm{1}\right)}\right){dx} \\ $$$$\:\:{find}\:\:\:\:\frac{{Re}\left(\Omega\right)}{{Im}\left(\Omega\right)}=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Question-62291

Question Number 62291 by rajesh4661kumar@gamil.com last updated on 19/Jun/19 Commented by maxmathsup by imad last updated on 19/Jun/19 $$\Rightarrow\left({e}^{{x}} −\mathrm{1}\right){e}^{{y}} \:={e}^{{x}} \:\Rightarrow{e}^{{y}} \:=\frac{{e}^{{x}} }{{e}^{{x}} −\mathrm{1}}\:\Rightarrow{y}\:={ln}\left(\frac{{e}^{{x}}…

y-x-2-1-At-Q-y-y-x-x-2-y-y-x-2-2x-x-x-2-2-Subtracting-1-from-2-y-y-x-2-2x-x-x-2-y-x-2-y-2x-x-x-2-Divide-through-by-

Question Number 127731 by Tosin Okunowo last updated on 01/Jan/21 $$\mathrm{y}\:=\:\mathrm{x}^{\mathrm{2}} \:……..\left[\mathrm{1}\right] \\ $$$$\mathrm{At}\:\mathrm{Q},\:\mathrm{y}\:+\:\delta\mathrm{y}\:=\:\left(\mathrm{x}+\delta\mathrm{x}\right)^{\mathrm{2}} \\ $$$$\mathrm{y}+\delta\mathrm{y}\:=\:\mathrm{x}^{\mathrm{2}} +\mathrm{2x}.\delta\mathrm{x}+\left(\delta\mathrm{x}\right)^{\mathrm{2}} …..\left[\mathrm{2}\right] \\ $$$$\mathrm{Subtracting}\:\left[\mathrm{1}\right]\:\mathrm{from}\:\left[\mathrm{2}\right] \\ $$$$\mathrm{y}+\delta\mathrm{y}=\:\mathrm{x}^{\mathrm{2}} +\mathrm{2x}.\delta\mathrm{x}+\left(\delta\mathrm{x}\right)^{\mathrm{2}} \\ $$$$\mathrm{y}\:\:\:\:\:\:\:\:\:=\:\mathrm{x}^{\mathrm{2}}…

Question-62102

Question Number 62102 by rajesh4661kumar@gamil.com last updated on 15/Jun/19 Answered by Kunal12588 last updated on 15/Jun/19 $$\sqrt{\mathrm{1}−{x}^{\mathrm{6}} }+\sqrt{\mathrm{1}−{y}^{\mathrm{6}} }=\mathrm{9}\left({x}^{\mathrm{3}} −{y}^{\mathrm{3}} \right) \\ $$$$\Rightarrow\frac{−\mathrm{6}{x}^{\mathrm{5}} }{\mathrm{2}\sqrt{\mathrm{1}−{x}^{\mathrm{6}} }}+\frac{−\mathrm{6}{y}^{\mathrm{5}}…

lim-n-k-1-n-k-n-k-n-1-

Question Number 127454 by snipers237 last updated on 29/Dec/20 $$\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{{k}!\left({n}−{k}\right)!}{{n}!}\:=\:\mathrm{1} \\ $$ Answered by Ar Brandon last updated on 29/Dec/20 $$\forall\mathrm{n}\geqslant\mathrm{4},\:\forall\mathrm{k}\in\left\{\mathrm{2},…,\mathrm{n}−\mathrm{2}\right\},\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{k}}…