Question Number 132753 by liberty last updated on 16/Feb/21 $$\mathrm{Given}\:\mathrm{x},\mathrm{y}\:\in\mathbb{R}\:,\:\mathrm{x},\mathrm{y}\neq\:\mathrm{0} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{and}\:\mathrm{minimum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{xy}−\mathrm{4y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{4y}^{\mathrm{2}} }\: \\ $$ Commented by mr W last updated…
Question Number 132762 by liberty last updated on 16/Feb/21 Answered by EDWIN88 last updated on 16/Feb/21 $$\Rightarrow\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\:\mathrm{9}\:\Rightarrow\mathrm{x}^{\mathrm{2}} =\mathrm{9}−\mathrm{y}^{\mathrm{2}} \\ $$$$\mathrm{Volume}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\pi\mathrm{x}^{\mathrm{2}} \left(\mathrm{3}+\mathrm{y}\right)=\:\frac{\mathrm{1}}{\mathrm{3}}\pi\left(\mathrm{9}−\mathrm{y}^{\mathrm{2}} \right)\left(\mathrm{3}+\mathrm{y}\right) \\…
Question Number 1676 by hhhggvghhh last updated on 31/Aug/15 $$\boldsymbol{{hhjghhjjgkggjggigfhpppkknbgjffffg}} \\ $$$$\boldsymbol{{biuggjnggtbnkoyfhjiuhbhuklphh}} \\ $$$$\boldsymbol{{jinbh}}\mathrm{678656}\boldsymbol{{kkiohhuggjngffjkkdooxk}} \\ $$$$\boldsymbol{{ikhhkjhv}}\mathrm{2}\left[\mathrm{65}\sqrt{\sqrt{\mathrm{58}\:\mathrm{889}<\boldsymbol{{lkkjkbmbbnnb}}}}\right. \\ $$$$\boldsymbol{{jkkhjm}}\sqrt{\boldsymbol{{nlm}}\mathrm{6}\boldsymbol{{jikmbh}}\sqrt{\boldsymbol{{jlbj}}}} \\ $$$$\boldsymbol{{jljbnkbbnmnmmnjknbjnrurubv}}\underset{\boldsymbol{{nkjnbmm}}} {\boldsymbol{{m}}} \\ $$$$\boldsymbol{{jjnbbnjnnj}}^{} \\ $$$$\boldsymbol{{nkn}}…
Question Number 132741 by mnjuly1970 last updated on 16/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:\:\:{calculus}… \\ $$$$\:\:\int_{\mathrm{0}^{\:\:\:\:} \:\:} ^{\:\mathrm{1}} \frac{{dx}}{\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} \left(\mathrm{1}−{x}\right)^{\mathrm{3}} \right)^{\frac{\mathrm{1}}{\mathrm{5}}} }\:=? \\ $$ Commented by MJS_new last updated…
Question Number 1624 by 112358 last updated on 27/Aug/15 $${Find}\:{the}\:{first}\:{derivative}\:{of} \\ $$$${y}\left({x}\right)=\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+\sqrt{{x}+…}}}}} \\ $$$${from}\:{first}\:{principles}.\: \\ $$$$ \\ $$ Commented by Rasheed Soomro last updated on…
Question Number 1571 by 112358 last updated on 20/Aug/15 $$\int_{\mathrm{0}} ^{\:\infty} \frac{{e}^{−\mathrm{3}{x}^{\mathrm{2}} } }{{x}^{\mathrm{1}/\mathrm{5}} }{dx}=? \\ $$ Answered by prakash jain last updated on 20/Aug/15…
Question Number 132477 by KZ last updated on 14/Feb/21 $${define} \\ $$$${f}\left({x}.{y}\right)= \\ $$$$\left.\left\{\frac{\mathrm{xy}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} \right)\:}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\:{if}\:\left({x}.{y}\right)\neq\right)\mathrm{0}.\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{if}\:\left({x}.{y}\right)=\left(\mathrm{0}.\mathrm{0}\right) \\ $$$$ \\ $$$${show}\:{that}\:{f},\frac{\partial{f}}{\partial{x}}\:{and}\:\frac{\partial{f}}{\partial{y}\:\:}\:{are}\: \\…
Question Number 66922 by paro123 last updated on 20/Aug/19 Commented by paro123 last updated on 20/Aug/19 $$\mathrm{No}.\mathrm{8} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 132459 by mnjuly1970 last updated on 14/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:….\:{nice}\:\:\:{calculus}\:…. \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({x}^{\mathrm{2}} \right){ln}\left({x}\right)}{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx}= \\ $$$$\:\:{solution}: \\ $$$$\boldsymbol{\phi}\overset{{x}^{\mathrm{2}} ={t}} {=}\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}\left({t}\right){ln}\left(\sqrt{{t}}\:\right)}{{t}^{\frac{\mathrm{3}}{\mathrm{4}}} }\:\frac{{dt}}{{t}^{\frac{\mathrm{1}}{\mathrm{2}}}…
Question Number 132444 by liberty last updated on 14/Feb/21 Answered by bemath last updated on 14/Feb/21 Terms of Service Privacy Policy Contact: info@tinkutara.com