Menu Close

Category: Differentiation

A-lighthouse-L-is-located-on-a-small-island-2-km-from-the-nearest-point-A-on-a-long-the-straigh-shoreline-If-the-lighthouse-lamp-rotates-at-3-revolutions-per-minute-how-fast-is-the-illuminated-s

Question Number 132225 by bemath last updated on 12/Feb/21 $$ \\ $$$$\rightarrow\mathrm{A}\:\mathrm{lighthouse}\:\mathrm{L}\:\mathrm{is}\:\mathrm{located}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{small}\:\mathrm{island}\:\mathrm{2}\:\mathrm{km}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{nearest}\:\mathrm{point}\:\mathrm{A}\:\mathrm{on}\:\mathrm{a}\:\mathrm{long}\:\mathrm{the} \\ $$$$\mathrm{straigh}\:\mathrm{shoreline}\:.\:\mathrm{If}\:\mathrm{the} \\ $$$$\mathrm{lighthouse}\:\mathrm{lamp}\:\mathrm{rotates}\:\mathrm{at}\:\mathrm{3} \\ $$$$\mathrm{revolutions}\:\mathrm{per}\:\mathrm{minute}.\:\mathrm{how}\:\mathrm{fast}\: \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{illuminated}\:\mathrm{spot}\:\mathrm{P}\:\mathrm{on}\:\mathrm{the} \\…

how-fast-is-the-area-of-a-rectangle-changing-if-one-side-is-10-cm-long-and-increasing-at-a-rate-of-2-cm-s-and-the-other-side-is-8-cm-long-and-is-decreasing-at-a-rate-of-3-cm-s-

Question Number 132211 by benjo_mathlover last updated on 12/Feb/21 $$ \\ $$$$\mathrm{how}\:\mathrm{fast}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{a}\: \\ $$$$\mathrm{rectangle}\:\mathrm{changing}\:\mathrm{if}\:\mathrm{one}\:\mathrm{side}\:\mathrm{is}\:\mathrm{10} \\ $$$$\:\mathrm{cm}\:\mathrm{long}\:\mathrm{and}\:\mathrm{increasing}\:\mathrm{at}\:\mathrm{a} \\ $$$$\mathrm{rate}\:\mathrm{of}\:\mathrm{2}\:\mathrm{cm}/\mathrm{s}\:\mathrm{and}\:\mathrm{the}\:\mathrm{other}\:\mathrm{side}\:\mathrm{is}\: \\ $$$$\mathrm{8}\:\mathrm{cm}\:\mathrm{long}\:\mathrm{and}\:\mathrm{is}\:\mathrm{decreasing}\:\mathrm{at}\: \\ $$$$\mathrm{a}\:\mathrm{rate}\:\mathrm{of}\:\mathrm{3}\:\mathrm{cm}/\mathrm{s} \\ $$ Answered…

calculus-1-if-y-1-sin-x-cos-x-1-3-then-3y-12-y-2-y-2-

Question Number 132104 by mnjuly1970 last updated on 11/Feb/21 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{calculus}\:\left(\mathrm{1}\right)… \\ $$$$\:\:{if}\:\:{y}=\sqrt[{\mathrm{3}}]{\frac{\mathrm{1}}{{sin}\left({x}\right)+{cos}\left({x}\right)}}\:\:{then}\:: \\ $$$$\:\:\:\:\mathrm{3}{y}''−\mathrm{12}\left({y}'\right)^{\mathrm{2}} −{y}^{\mathrm{2}} =\:??? \\ $$$$\:\:\:\:\:……… \\ $$ Answered by mnjuly1970 last updated…

Given-the-function-f-x-0-x-1-t-3-1-2-dt-If-h-x-is-the-inverse-of-f-x-and-h-x-is-derivative-of-h-x-Find-the-value-of-h-x-h-x-2-

Question Number 132076 by liberty last updated on 11/Feb/21 $$\mathrm{Given}\:\mathrm{the}\:\mathrm{function}\:\mathrm{f}\left({x}\right)=\int_{\mathrm{0}} ^{\:{x}} \left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{−\mathrm{1}/\mathrm{2}} {dt}. \\ $$$$\mathrm{If}\:\mathrm{h}\left({x}\right)\:\mathrm{is}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of}\:\mathrm{f}\left({x}\right)\:\mathrm{and}\:\mathrm{h}'\left({x}\right) \\ $$$$\mathrm{is}\:\mathrm{derivative}\:\mathrm{of}\:\mathrm{h}\left({x}\right).\:\mathrm{Find}\:\mathrm{the}\: \\ $$$$\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{h}''\left({x}\right)}{\left(\mathrm{h}\left(\mathrm{x}\right)\right)^{\mathrm{2}} }\:. \\ $$$$ \\ $$…

Question-66498

Question Number 66498 by miracle wokama last updated on 16/Aug/19 Commented by MJS last updated on 16/Aug/19 $$\mathrm{too}\:\mathrm{complicated} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{see}\:\mathrm{that}\:{f}'\left(\mathrm{0}\right)=\mathrm{1}\:\mathrm{and}\:{f}'\left(\mathrm{1}\right)=\mathrm{100} \\ $$ Commented by mathmax…

f-x-y-z-x-y-z-g-x-y-z-x-y-z-h-x-y-z-g-x-y-z-f-x-y-z-h-x-y-z-h-x-y-z-

Question Number 923 by 123456 last updated on 25/Apr/15 $${f}\left({x},{y},{z}\right)={x}+{y}+{z} \\ $$$$\boldsymbol{{g}}\left({x},{y},{z}\right)=\left({x},{y},{z}\right) \\ $$$$\boldsymbol{{h}}\left({x},{y},{z}\right)=\boldsymbol{{g}}\left({x},{y},{z}\right)−\bigtriangledown{f}\left({x},{y},{z}\right)=??? \\ $$$$\bigtriangledown\centerdot\boldsymbol{{h}}\left({x},{y},{z}\right)=? \\ $$$$\bigtriangledown×\boldsymbol{{h}}\left({x},{y},{z}\right)=??? \\ $$ Answered by 2closedStringsMeet last updated…

Question-131960

Question Number 131960 by liberty last updated on 10/Feb/21 Answered by mr W last updated on 10/Feb/21 $${r}^{\mathrm{2}} +{h}^{\mathrm{2}} =\left(\sqrt{\mathrm{3}}\right)^{\mathrm{2}} \:\Rightarrow{r}^{\mathrm{2}} =\mathrm{3}−{h}^{\mathrm{2}} \\ $$$${V}=\frac{\pi}{\mathrm{3}}{r}^{\mathrm{2}} {h}=\frac{\pi}{\mathrm{3}}\left(\mathrm{3}−{h}^{\mathrm{2}}…

Question-131887

Question Number 131887 by Algoritm last updated on 09/Feb/21 Answered by SEKRET last updated on 09/Feb/21 $$\:\boldsymbol{\mathrm{Leybnist}}\:\:\:\boldsymbol{\mathrm{formula}} \\ $$$$\:\:\boldsymbol{\mathrm{u}}=\:\boldsymbol{\mathrm{e}}^{−\mathrm{2}\boldsymbol{\mathrm{x}}} \:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{u}}^{\boldsymbol{\mathrm{n}}} =\left(−\mathrm{2}\right)^{\boldsymbol{\mathrm{n}}} \centerdot\boldsymbol{\mathrm{e}}^{−\mathrm{2}\boldsymbol{\mathrm{x}}} \\ $$$$\:\boldsymbol{\mathrm{v}}=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\boldsymbol{\mathrm{x}}}}\:\:\:\:\:\:\boldsymbol{\mathrm{v}}^{\boldsymbol{\mathrm{n}}} =\frac{\left(\mathrm{2}\boldsymbol{\mathrm{n}}−\mathrm{1}\right)!!}{\mathrm{2}^{\boldsymbol{\mathrm{n}}}…