Question Number 127455 by snipers237 last updated on 29/Dec/20 $${Prove}\:{that}\:{for}\:{all}\:{n}\geqslant\mathrm{1}\: \\ $$$$\left.\mathrm{1}\left.\right){There}\:{exist}\:\:{a}_{{n}} \in\right]\mathrm{0},\mathrm{1}\left[\:{such}\:{as}\:\:\right. \\ $$$${sin}\left(\frac{\mathrm{1}}{{n}}\right)=\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{\mathrm{6}{n}^{\mathrm{3}} }{cos}\left(\frac{\mathrm{1}}{{n}}{a}_{{n}} \right) \\ $$$$\left.\mathrm{2}\right)\:{Prove}\:{that}\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{a}_{{n}} \:=\:\frac{\mathrm{1}}{\mathrm{10}}\: \\ $$ Terms of…
Question Number 127452 by snipers237 last updated on 29/Dec/20 $$\:{Let}\:\:{a}\in\mathbb{R}^{\ast} ,\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left({asin}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)+\frac{\mathrm{1}}{{a}}{cos}\left({n}\right)\right)^{{n}} =\mathrm{0} \\ $$ Answered by Ar Brandon last updated on 29/Dec/20 $$\mathrm{u}_{\mathrm{n}}…
Question Number 192901 by cortano12 last updated on 30/May/23 Answered by Frix last updated on 30/May/23 $$\mathrm{Assuming}\:{a},\:{b}\:>\mathrm{0} \\ $$$${z}=\frac{{x}}{{a}+\frac{{x}}{{b}+{z}}}\:\Rightarrow\:{z}=\frac{−{b}+\sqrt{\left(\mathrm{4}{x}+{ab}\right){b}}}{\mathrm{2}} \\ $$$${y}={x}+{z}\:\Rightarrow\:{y}={x}+\frac{−{b}+\sqrt{\left(\mathrm{4}{x}+{ab}\right){b}}}{\mathrm{2}} \\ $$$$\frac{{d}\left[{x}+\frac{−{b}+\sqrt{\left(\mathrm{4}{x}+{ab}\right){b}}}{\mathrm{2}}\right]}{{dx}}=\mathrm{1}+\frac{\sqrt{{b}}}{\:\sqrt{\left(\mathrm{4}{x}+{ab}\right){a}}} \\ $$…
Question Number 61807 by bshahid010@gmail.com last updated on 09/Jun/19 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 127315 by mnjuly1970 last updated on 28/Dec/20 $$\:\:\:\:\:\:\:\:\:…{advanced}\:\:\:{calculud}… \\ $$$$\:\:\:\:{compute}\:\:::: \\ $$$$\:\:\:\:\:\psi\left({i}\right)=?? \\ $$$$\:\:\:\:\:\:\: \\ $$ Commented by Dwaipayan Shikari last updated on…
Question Number 61752 by maxmathsup by imad last updated on 08/Jun/19 $${solve}\:{the}\:\left({de}\right)\:\:\:\:\:\:\sqrt{\mathrm{2}{x}+\mathrm{1}}{y}^{'} \:−{x}^{\mathrm{3}} {y}\:\:=\:{xln}\left({x}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 61675 by peter frank last updated on 06/Jun/19 Commented by peter frank last updated on 06/Jun/19 $${find}\:\:{solution}\:{of}\:{D}.{E} \\ $$ Answered by ajfour last…
Question Number 127152 by mnjuly1970 last updated on 27/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{differential}\:\:{equation}…\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:{if}\:\:\:\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:=\:{y}\left({x}\right)\:\:\&\:{y}\left(\mathrm{0}\right)=−{y}'\left(\mathrm{0}\right)=\mathrm{1} \\ $$$$\:\:{then}\:\:\:{evaluate}\:\:::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} {y}\left({x}\right).{y}^{−\mathrm{1}} \left(−{x}\right){dx}=? \\ $$$$ \\ $$…
Question Number 127119 by liberty last updated on 27/Dec/20 $${The}\:{barometric}\:{pressure}\:{p}\:{at}\:{an}\:{altitude} \\ $$$${of}\:{h}\:{miles}\:{above}\:{sea}\:{level}\:{satisfies}\:{the} \\ $$$${differential}\:{equation}\:\frac{{dp}}{{dh}}\:=\:−\mathrm{0}.\mathrm{2}{p}\:. \\ $$$${If}\:{the}\:{pressure}\:{at}\:{sea}\:{level}\:{is}\:\mathrm{29}.\mathrm{92}\:{inches} \\ $$$${of}\:{mercury},\:{find}\:{the}\:{barometric}\: \\ $$$${preassure}\:{at}\:\mathrm{17},\mathrm{000}\:{ft}\: \\ $$$$\left({A}\right)\:\mathrm{56}.\mathrm{97}\:{in}\:\:\:\:\:\:\left({B}\right)\:\mathrm{15}.\mathrm{71}\:{in} \\ $$$$\left({C}\right)\:\mathrm{7}.\mathrm{86}\:{in}\:\:\:\:\:\:\:\:\:\:\left({D}\right)\:\mathrm{1}\:{in} \\…
Question Number 127060 by sdfg last updated on 26/Dec/20 Terms of Service Privacy Policy Contact: info@tinkutara.com