Question Number 126605 by bramlexs22 last updated on 22/Dec/20 $$\:{Let}\:{P}\:{be}\:{point}\:{on}\:{the}\:{graph}\: \\ $$$${of}\:{a}\:{straight}\:{line}\:{y}=\mathrm{2}{x}−\mathrm{3}\:{and}\:{Q} \\ $$$${be}\:{a}\:{point}\:{on}\:{the}\:{graph}\:{of}\:{a}\:{parabola} \\ $$$${y}={x}^{\mathrm{2}} +{x}+\mathrm{1}\:.{Find}\:{the}\:{shortest}\: \\ $$$${distance}\:{between}\:{P}\:{and}\:{Q}\:. \\ $$ Answered by liberty last…
Question Number 126524 by rs4089 last updated on 21/Dec/20 Answered by Olaf last updated on 21/Dec/20 $$\mathrm{Let}\:{u}\:=\:{e}^{{x}} \\ $$$$\frac{{dy}}{{dx}}\:=\:\frac{{dy}}{{du}}.\frac{{du}}{{dx}}\:=\:{e}^{{x}} \frac{{dy}}{{du}}\:=\:{u}\frac{{dy}}{{du}} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:=\:\frac{{d}}{{dx}}\left(\frac{{du}}{{dx}}\right)\:=\:\frac{{d}}{{du}}\left({u}\frac{{du}}{{du}}\right)\frac{{du}}{{dx}} \\…
Question Number 192054 by cortano12 last updated on 07/May/23 $$\:\:\:\mathrm{If}\:\mathrm{Q}\:=\:\frac{\mathrm{2}−\mathrm{x}}{\mathrm{y}−\mathrm{1}}\:;\:−\mathrm{5}\leqslant\mathrm{x}<−\mathrm{1}\:,\:\mathrm{5}\leqslant\mathrm{y}<\mathrm{6} \\ $$$$\:\:\:\mathrm{Find}\:\mathrm{Q}_{\mathrm{max}} .\: \\ $$ Answered by mehdee42 last updated on 07/May/23 $$−\mathrm{5}\leqslant{x}<−\mathrm{1}\overset{×−\mathrm{1}} {\Rightarrow}\:\mathrm{1}<−{x}\leqslant\mathrm{5}\overset{+\mathrm{2}} {\Rightarrow}\mathrm{3}<\mathrm{2}−{x}\leqslant\mathrm{7}\:\:\left({i}\right)…
Question Number 126478 by BHOOPENDRA last updated on 20/Dec/20 $${find}\:\frac{\partial{w}}{\partial\theta}\:{and}\:\frac{\partial{w}}{\partial\phi}\:{given}\:{that}\: \\ $$$${w}\left({x},{y},{z}\right)={f}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)\:{where}\:{x}={rcos}\theta{cos}\phi \\ $$$${y}={rcos}\theta{sin}\phi,{z}={rsin}\theta. \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 126476 by mnjuly1970 last updated on 20/Dec/20 $$\:\:\:\:\:\:\:\:…{nice}\:\:{calculus}… \\ $$$$\:\:{calculate}\::: \\ $$$$\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \:\frac{{tanh}\left(\pi{x}\right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}\:{dx}=? \\ $$ Answered by mathmax by abdo last…
Question Number 126440 by mnjuly1970 last updated on 20/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{advanced}\:\:{calculus}… \\ $$$$\:\:\:\:{prove}\:\:{that}\:::: \\ $$$$\:\:\:\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\:\right)=\frac{{cosh}\left(\sqrt{\mathrm{2}}\:\pi\right)−{cos}\left(\sqrt{\mathrm{2}}\:\pi\right)}{\mathrm{4}\pi^{\mathrm{2}} } \\ $$$$ \\ $$ Answered by Dwaipayan…
Question Number 191859 by mathlove last updated on 02/May/23 Commented by mr W last updated on 03/May/23 $${all}\:{are}\:{of}\:{type}\:{y}'+{P}\left({x}\right){y}={Q}\left({x}\right). \\ $$ Answered by qaz last updated…
Question Number 191796 by mathlove last updated on 30/Apr/23 Commented by mathlove last updated on 01/May/23 $${pleas}\:{solve}\:{this} \\ $$ Answered by AST last updated on…
Question Number 60695 by maxmathsup by imad last updated on 24/May/19 $${solve}\:\sqrt{\mathrm{3}+{x}^{\mathrm{2}} }{y}^{''} \:\:\:\:−\left(\mathrm{2}{x}+\mathrm{1}\right){y}^{'} \:={x}^{\mathrm{2}} \:{e}^{−{x}^{\mathrm{2}} \:\:\:} \\ $$ Commented by maxmathsup by imad last…
Question Number 126070 by benjo_mathlover last updated on 17/Dec/20 Commented by liberty last updated on 17/Dec/20 $${h}\left({x}\right)=\int_{\mathrm{1}} ^{\:{x}} {f}\left({t}\right)\:{dt}\:\Leftrightarrow\:{h}'\left({x}\right)=\:{f}\left({x}\right) \\ $$$${h}'\left(\mathrm{4}\right)={f}\left(\mathrm{4}\right)=\:\mathrm{2} \\ $$$$ \\ $$…