Menu Close

Category: Differentiation

find-w-and-w-given-that-w-x-y-z-f-x-2-y-2-z-2-where-x-rcos-cos-y-rcos-sin-z-rsin-

Question Number 126478 by BHOOPENDRA last updated on 20/Dec/20 $${find}\:\frac{\partial{w}}{\partial\theta}\:{and}\:\frac{\partial{w}}{\partial\phi}\:{given}\:{that}\: \\ $$$${w}\left({x},{y},{z}\right)={f}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right)\:{where}\:{x}={rcos}\theta{cos}\phi \\ $$$${y}={rcos}\theta{sin}\phi,{z}={rsin}\theta. \\ $$ Terms of Service Privacy Policy Contact:…

advanced-calculus-prove-that-n-2-1-1-n-4-cosh-2-pi-cos-2-pi-4pi-2-

Question Number 126440 by mnjuly1970 last updated on 20/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{advanced}\:\:{calculus}… \\ $$$$\:\:\:\:{prove}\:\:{that}\:::: \\ $$$$\:\:\:\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\:\right)=\frac{{cosh}\left(\sqrt{\mathrm{2}}\:\pi\right)−{cos}\left(\sqrt{\mathrm{2}}\:\pi\right)}{\mathrm{4}\pi^{\mathrm{2}} } \\ $$$$ \\ $$ Answered by Dwaipayan…

Question-126070

Question Number 126070 by benjo_mathlover last updated on 17/Dec/20 Commented by liberty last updated on 17/Dec/20 $${h}\left({x}\right)=\int_{\mathrm{1}} ^{\:{x}} {f}\left({t}\right)\:{dt}\:\Leftrightarrow\:{h}'\left({x}\right)=\:{f}\left({x}\right) \\ $$$${h}'\left(\mathrm{4}\right)={f}\left(\mathrm{4}\right)=\:\mathrm{2} \\ $$$$ \\ $$…

Let-A-2-2-and-f-R-R-R-such-as-f-x-y-A-x-y-E-x-E-y-where-A-is-the-caracteristic-function-of-A-Prove-that-f-is-a-density-of-a-probability-P-

Question Number 126039 by snipers237 last updated on 16/Dec/20 $${Let}\:{A}=\left[\mathrm{2};\infty\left[^{\mathrm{2}} \:\:{and}\:{f}\:\in\left(\mathbb{R}×\mathbb{R}\right)^{\mathbb{R}} \:{such}\:{as}\:\right.\right. \\ $$$${f}\left({x},{y}\right)=\frac{\chi_{{A}} \left({x},{y}\right)}{{E}\left({x}\right)^{{E}\left({y}\right)} }\:\:{where}\:\chi_{{A}} \:{is}\:{the}\:{caracteristic}\:{function}\:{of}\:{A} \\ $$$$\:{Prove}\:{that}\:{f}\:{is}\:{a}\:{density}\:{of}\:{a}\:{probability}\:{P} \\ $$ Answered by mindispower last…

Question-126010

Question Number 126010 by bramlexs22 last updated on 16/Dec/20 Answered by liberty last updated on 16/Dec/20 $${The}\:{area}\:{of}\:{a}\:{tringle}\:{is}\:{A}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{8}\right)\left(\mathrm{6}\right)\mathrm{sin}\:\theta \\ $$$${A}\:=\:\mathrm{24}\:\mathrm{sin}\:\theta \\ $$$$\frac{{dA}}{{dt}}\:=\:\left(\mathrm{24}\:\mathrm{cos}\:\theta\right)\:\frac{{d}\theta}{{dt}}\:;\:{where}\:\frac{{d}\theta}{{dt}}\:=\:\mathrm{0}.\mathrm{12}\:{rad}/{sec} \\ $$$$\Leftrightarrow\:\frac{{dA}}{{dt}}\:=\:\mathrm{24}×\mathrm{0}.\mathrm{12}×\mathrm{cos}\:\frac{\pi}{\mathrm{6}}=\:\mathrm{2}.\mathrm{49}\:{m}^{\mathrm{2}} /{sec}\: \\…

Find-all-asymptotes-of-the-function-y-x-x-2-2-

Question Number 126008 by bramlexs22 last updated on 16/Dec/20 $$\:{Find}\:{all}\:{asymptotes}\:{of}\:{the}\: \\ $$$${function}\:{y}=\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\:. \\ $$ Answered by liberty last updated on 16/Dec/20 $${Horizontal}\:{asymptote}\::\:{y}\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}}{\:\sqrt{{x}^{\mathrm{2}} +\mathrm{2}}}\:=\:\underset{{x}\rightarrow\infty}…