Menu Close

Category: Differentiation

nice-integral-prove-that-0-pi-2-tan-x-ln-sin-x-ln-cos-x-dx-3-8-Good-luck-

Question Number 126003 by mnjuly1970 last updated on 16/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:{integral}… \\ $$$$\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\phi=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {tan}\left({x}\right){ln}\left({sin}\left({x}\right)\right){ln}\left({cos}\left({x}\right)\right){dx}=\frac{\zeta\left(\mathrm{3}\right.}{\mathrm{8}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathscr{G}{ood}\:{luck} \\ $$ Answered by Olaf last updated…

If-z-3-x-2-y-2-dx-dt-3-dy-dt-2-find-dz-dt-when-x-4-and-y-1-

Question Number 125996 by bramlexs22 last updated on 16/Dec/20 $$\:{If}\:{z}^{\mathrm{3}} ={x}^{\mathrm{2}} −{y}^{\mathrm{2}} \:,\:\rightarrow\begin{cases}{\frac{{dx}}{{dt}}=\mathrm{3}}\\{\frac{{dy}}{{dt}}=\mathrm{2}}\end{cases} \\ $$$${find}\:\frac{{dz}}{{dt}}\:{when}\:{x}=\mathrm{4}\:{and}\:{y}=\mathrm{1} \\ $$ Answered by Olaf last updated on 16/Dec/20 $${z}^{\mathrm{3}}…

Question-125995

Question Number 125995 by liberty last updated on 16/Dec/20 Commented by benjo_mathlover last updated on 16/Dec/20 $${f}\left({x}\right)=\:\begin{cases}{{x}\:;\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}}\\{−{x}\:;\:−\mathrm{1}\leqslant{x}\leqslant\mathrm{0}}\end{cases} \\ $$$$\:{f}\:'\left(−\mathrm{1}\right)\:=\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{f}\left(−\mathrm{1}+{h}\right)−{f}\left(−\mathrm{1}\right)}{{h}} \\ $$$${f}\:'\left(−\mathrm{1}\right)=\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{−\left(−\mathrm{1}+{h}\right)−\left(\mathrm{1}\right)}{{h}} \\ $$$$\:{f}\:'\left(−\mathrm{1}\right)=\:\underset{{h}\rightarrow\mathrm{0}}…

the-function-is-considered-f-x-y-e-xy-x-y-sen-2x-3y-pi-Calcule-f-x-f-y-2-f-x-2-2-f-x-y-f-x-0-1-f-y-2-1-f-xx-0-1-f-xy-2-1-

Question Number 60426 by cesar.marval.larez@gmail.com last updated on 20/May/19 $${the}\:{function}\:{is}\:{considered}\: \\ $$$${f}\left({x},{y}\right)={e}^{{xy}} +\frac{{x}}{{y}}+{sen}\left(\left(\mathrm{2}{x}+\mathrm{3}{y}\right)\pi\right)\:{Calcule}: \\ $$$$\frac{\partial{f}}{\partial{x}},\frac{\partial{f}}{\partial{y}},\frac{\partial^{\mathrm{2}} {f}}{\partial{x}^{\mathrm{2}} },\frac{\partial^{\mathrm{2}} {f}}{\partial{x}\partial{y}}.\:\:\:{f}_{{x}} \left(\mathrm{0},\mathrm{1}\right),{f}_{{y}} \left(\mathrm{2},−\mathrm{1}\right),\:{f}_{{xx}} \left(\mathrm{0},\mathrm{1}\right),{f}_{{xy}} \left(\mathrm{2},−\mathrm{1}\right) \\ $$ Commented…

solve-the-differential-equation-y-x-x-y-2-x-please-i-need-help-

Question Number 125901 by pticantor last updated on 15/Dec/20 $$\:\bigstar^{\bigstar\bigstar} \boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{differential}}\:\boldsymbol{{equation}}\bigstar^{\bigstar^{\bigstar} } \\ $$$$ \\ $$$$\:\:\boldsymbol{{y}}^{'} \left(\boldsymbol{{x}}\right)+\boldsymbol{{x}}=\boldsymbol{{y}}^{\mathrm{2}} \left(\boldsymbol{{x}}\right) \\ $$$$ \\ $$$$\boldsymbol{{please}}\:\boldsymbol{{i}}\:\boldsymbol{{need}}\:\boldsymbol{{help}}\:!! \\ $$ Terms…

Question-60357

Question Number 60357 by Sardor2211 last updated on 20/May/19 Commented by Mr X pcx last updated on 20/May/19 $${the}\:{equation}\:{is}\:{not}\:{clear}\:{but}\:{i}\:{suppose} \\ $$$${that}\:{is}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{'} −\mathrm{2}{xy}\:=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} \\…