Menu Close

Category: Differentiation

Given-a-function-f-x-2ax-2-x-3-1-3-Find-the-inclined-asymptotes-

Question Number 125099 by bramlexs22 last updated on 08/Dec/20 $$\:{Given}\:{a}\:{function}\:{f}\left({x}\right)\:=\:\sqrt[{\mathrm{3}}]{\mathrm{2}{ax}^{\mathrm{2}} −{x}^{\mathrm{3}} }. \\ $$$${Find}\:{the}\:{inclined}\:{asymptotes} \\ $$ Answered by liberty last updated on 08/Dec/20 $$\:{k}\:=\:\underset{{x}\rightarrow\pm\infty} {\mathrm{lim}}\:\frac{{y}}{{x}}\:=\:\underset{{x}\rightarrow\pm\infty}…

Given-x-y-z-gt-0-and-x-2-y-2-z-2-x-2y-3z-23-find-maximum-of-x-y-z-

Question Number 190546 by cortano12 last updated on 05/Apr/23 $$\:\mathrm{Given}\:\mathrm{x},\mathrm{y},\mathrm{z}>\mathrm{0}\:\mathrm{and}\: \\ $$$$\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} +\mathrm{x}+\mathrm{2y}+\mathrm{3z}=\mathrm{23}\: \\ $$$$\:\mathrm{find}\:\mathrm{maximum}\:\mathrm{of}\:\mathrm{x}+\mathrm{y}+\mathrm{z}. \\ $$ Answered by mr W last updated…

y-sec-1-e-x-4-Find-dy-

Question Number 124956 by liberty last updated on 07/Dec/20 $$\:{y}\:=\:\mathrm{sec}^{−\mathrm{1}} \left({e}^{{x}^{\mathrm{4}} } \right)\:.\:{Find}\:{dy}\:=? \\ $$ Answered by bemath last updated on 07/Dec/20 $$\:\Rightarrow\:{e}^{{x}^{\mathrm{4}} } \:=\:\mathrm{sec}\:{y}\:{or}\:\mathrm{cos}\:{y}\:=\:\frac{\mathrm{1}}{{e}^{{x}^{\mathrm{4}}…

What-should-the-dimensions-be-of-a-cylinder-so-that-for-a-given-volume-v-its-total-surface-S-minimum-

Question Number 124924 by bemath last updated on 07/Dec/20 $$\:{What}\:{should}\:{the}\:{dimensions}\:{be} \\ $$$${of}\:{a}\:{cylinder}\:{so}\:{that}\:{for}\:{a}\:{given}\:{volume}\: \\ $$$${v}\:{its}\:{total}\:{surface}\:{S}\:{minimum}\:?\: \\ $$ Commented by liberty last updated on 07/Dec/20 $${Denoting}\:{by}\:{r}\:{the}\:{radius}\:{of}\:{the}\:{base}\:{of}\:{the} \\…

laplace-transform-L-t-sin-t-t-F-s-F-s-then-calculate-0-e-

Question Number 190420 by mnjuly1970 last updated on 02/Apr/23 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{laplace}\:\:\mathrm{transform} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathcal{L}_{{t}} \:\left\{\:\:\frac{\:\mathrm{sin}\left({t}\:\right)}{{t}}\:\:\right\}\:=\:\mathcal{F}\:\left({s}\:\right)\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathcal{F}\:\left({s}\:\right)=\:\:?\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:{then}\:\:{calculate}\:. \\ $$$$…

f-x-sin-x-x-sin-x-x-sin-x-df-x-dx-

Question Number 124845 by liberty last updated on 06/Dec/20 $$\:\:\:{f}\left({x}\right)\:=\:\mathrm{sin}\:\left(\frac{{x}}{{x}−\mathrm{sin}\:\left(\frac{{x}}{{x}−\mathrm{sin}\:{x}}\right)}\right)\: \\ $$$$\:\:\frac{{df}\left({x}\right)}{{dx}}\:? \\ $$ Answered by bemath last updated on 06/Dec/20 $${f}\:'\left({x}\right)=\frac{\mathrm{1}\left({x}−\mathrm{sin}\:\left(\frac{{x}}{{x}−\mathrm{sin}\:{x}}\right)\right)−{x}\left(\mathrm{1}−\left(\frac{{x}−\mathrm{sin}\:{x}−{x}\left(\mathrm{1}−\mathrm{cos}\:{x}\right)}{\left({x}−\mathrm{sin}\:{x}\right)^{\mathrm{2}} }\right)\mathrm{cos}\:\left(\frac{{x}}{{x}−\mathrm{sin}\:{x}}\right)\right.}{\left({x}−\mathrm{sin}\:\left(\frac{{x}}{{x}−\mathrm{sin}\:{x}}\right)\right)^{\mathrm{2}} }.\:\mathrm{cos}\:\left(\frac{{x}}{{x}−\mathrm{sin}\:\left(\frac{{x}}{{x}−\mathrm{sin}\:{x}}\right)}\right) \\…

nice-calculus-prove-that-lim-x-xe-1-x-e-1-x-1-x-2-euler-mascheroni-constant-

Question Number 124831 by mnjuly1970 last updated on 06/Dec/20 $$\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:{calculus}… \\ $$$$\:\:\:\:{prove}\:\:\:{that}:: \\ $$$$\:\:\:{lim}_{{x}\rightarrow\infty} \left\{{xe}^{\frac{\mathrm{1}}{{x}}} −{e}^{\frac{−\mathrm{1}}{{x}}} \Gamma\left(\frac{\mathrm{1}}{{x}}\:\right)\right\}=\mathrm{2}+\gamma \\ $$$$\:\:\:\:\gamma:\:{euler}−{mascheroni}\:{constant} \\ $$$$ \\ $$ Answered by…