Question Number 57754 by malwaan last updated on 11/Apr/19 $$\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\boldsymbol{{ln}}\left(\boldsymbol{{x}}\right) \\ $$$$\left(\boldsymbol{{f}}\circ\boldsymbol{{f}}\right)'=? \\ $$ Commented by maxmathsup by imad last updated on 11/Apr/19 $${we}\:{have}\:{f}^{'} \left({x}\right)\:=\frac{\mathrm{1}}{{x}}\:\Rightarrow\:\left({fof}\right)^{'}…
Question Number 123282 by zarminaawan last updated on 24/Nov/20 $${y}−{x}\frac{{dy}}{{dx}}={a}\left({y}×{y}+\frac{{dy}}{{dx}}\right) \\ $$ Answered by Dwaipayan Shikari last updated on 24/Nov/20 $${y}−{x}\frac{{dy}}{{dx}}={ay}^{\mathrm{2}} +{a}\frac{{dy}}{{dx}} \\ $$$$\frac{{dy}}{{dx}}\left({x}+{a}\right)={y}\left(\mathrm{1}−{ay}\right) \\…
Question Number 123280 by zarminaawan last updated on 24/Nov/20 $$\frac{{dy}}{{dx}}+\left(\mathrm{sec}\:{x}\right){y}=\mathrm{tan}\:{x} \\ $$ Answered by Dwaipayan Shikari last updated on 24/Nov/20 $${I}.{F}={e}^{\int{secx}} ={secx}+{tanx} \\ $$$${y}\left({secx}+{tanx}\right)=\int{tanx}\left({secx}+{tanx}\right){dx} \\…
Question Number 188806 by horsebrand11 last updated on 07/Mar/23 $${Find}\:{minimum}\:{value}\:{of}\: \\ $$$$\:\:\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{4}{y}+\mathrm{5}{y}^{\mathrm{2}} −{x}\: \\ $$$$\:{for}\:{x}\:{and}\:{y}\:{real}\:{numbers} \\ $$ Answered by mr W last updated on…
Question Number 123243 by benjo_mathlover last updated on 24/Nov/20 $$\:{What}\:{is}\:{the}\:{shortest}\:{distance} \\ $$$${between}\:{two}\:{parabolas}\: \\ $$$${y}^{\mathrm{2}} \:=\:{x}−\mathrm{2}\:{and}\:{x}^{\mathrm{2}} \:=\:{y}−\mathrm{2}\:. \\ $$ Commented by liberty last updated on 24/Nov/20…
Question Number 123124 by aupo14 last updated on 23/Nov/20 Commented by Dwaipayan Shikari last updated on 23/Nov/20 $${x}!=\Gamma\left({x}+\mathrm{1}\right) \\ $$$${log}\left({x}!\right)={log}\left(\Gamma\left({x}+\mathrm{1}\right)\right) \\ $$$$\frac{\frac{{dx}!}{{dx}}}{{x}!}=\frac{\Gamma'\left({x}+\mathrm{1}\right)}{\Gamma\left({x}+\mathrm{1}\right)} \\ $$$$\Rightarrow\frac{{d}}{{dx}}\left({x}!\right)={x}!.\psi\left({x}+\mathrm{1}\right) \\…
Question Number 123051 by simplyjerico last updated on 22/Nov/20 $${e}^{{y}} =\mathrm{ln}\left(\mathrm{x}^{\mathrm{3}} +\mathrm{3y}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 188534 by thotasandeep111 last updated on 03/Mar/23 Answered by mr W last updated on 03/Mar/23 $$\int{f}\left({x}\right){dx}={f}\left({x}\right) \\ $$$$\Rightarrow{f}\left({x}\right)={e}^{{x}} \\ $$$$\int\left({f}\left({x}\right)\right)^{\mathrm{2}} {dx}=\int{e}^{\mathrm{2}{x}} {dx}=\frac{{e}^{\mathrm{2}{x}} }{\mathrm{2}}+{C}=\frac{\left({f}\left({x}\right)\right)^{\mathrm{2}}…
Question Number 57415 by Abdo msup. last updated on 03/Apr/19 $${solve}\:\left({x}−\mathrm{1}\right){y}^{'} \:+\left(\mathrm{1}+\sqrt{{x}}\right){y}\:={x}\:{e}^{−\mathrm{2}{x}} \\ $$ Commented by maxmathsup by imad last updated on 12/Apr/19 $${due}\:{to}\:\sqrt{{x}}{we}\:{must}\:{have}\:{x}\geqslant\mathrm{0}\:\:\:\left({ed}\right)\:\Leftrightarrow\left(\sqrt{{x}}−\mathrm{1}\right)\left(\sqrt{{x}}+\mathrm{1}\right){y}^{'} +\left(\sqrt{\:{x}}+\mathrm{1}\right){y}\:={xe}^{−\mathrm{2}{x}}…
Question Number 122945 by CanovasCamiseros last updated on 21/Nov/20 Commented by CanovasCamiseros last updated on 21/Nov/20 $$\boldsymbol{{Question}}\:\left(\boldsymbol{{b}}\right) \\ $$ Answered by TANMAY PANACEA last updated…