Question Number 205827 by mustafazaheen last updated on 31/Mar/24 $$\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} =\mathrm{1} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{implceat}\:\mathrm{second}\:\mathrm{derivative} \\ $$ Answered by cortano12 last updated on 31/Mar/24 $$\:\mathrm{3}{x}^{\mathrm{2}} +\:\mathrm{3}{y}^{\mathrm{2}}…
Question Number 205393 by qtpi0 last updated on 19/Mar/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 205338 by cortano12 last updated on 17/Mar/24 Answered by mr W last updated on 17/Mar/24 $${x}\geqslant−\mathrm{2},\:{y}\geqslant−\mathrm{3} \\ $$$${x}+\mathrm{2}−\mathrm{4}\sqrt{{x}+\mathrm{2}}+\mathrm{4}+{y}+\mathrm{3}−\mathrm{4}\sqrt{{y}+\mathrm{3}}+\mathrm{4}=\mathrm{13} \\ $$$$\left(\sqrt{{x}+\mathrm{2}}−\mathrm{2}\right)^{\mathrm{2}} +\left(\sqrt{{y}+\mathrm{3}}−\mathrm{2}\right)^{\mathrm{2}} =\left(\sqrt{\mathrm{13}}\right)^{\mathrm{2}} \\…
Question Number 205200 by mathlove last updated on 12/Mar/24 $$\int_{\mathrm{1}} ^{\infty} \:\frac{{x}}{{x}^{\mathrm{3}} +{lnx}}\:{dx}=? \\ $$ Answered by mathzup last updated on 12/Mar/24 $${changement}\:{lnx}={t}\:{give} \\ $$$${I}=\int_{\mathrm{0}}…
Question Number 205024 by cortano12 last updated on 06/Mar/24 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 205013 by mathlove last updated on 05/Mar/24 $${if}\:{y}=\sqrt[{\mathrm{7}}]{{x}}\:{prove}\:{that} \\ $$$${y}^{'} =\frac{\mathrm{1}}{\mathrm{7}\:\sqrt[{\mathrm{7}}]{{x}^{\mathrm{6}} }} \\ $$ Answered by Frix last updated on 05/Mar/24 $${y}={x}^{{r}} \:\Rightarrow\:{y}'={rx}^{{r}−\mathrm{1}}…
Question Number 204909 by mnjuly1970 last updated on 01/Mar/24 $$ \\ $$$$\:\:\:\:\:\:\:\Omega=\:\int_{\frac{\mathrm{1}}{{e}}} ^{\:{e}} \frac{\:{arctan}\left({x}\right)}{{x}}\:{dx}=? \\ $$ Answered by witcher3 last updated on 01/Mar/24 $$\mathrm{x}\rightarrow\frac{\mathrm{1}}{\mathrm{x}} \\…
Question Number 204878 by mnjuly1970 last updated on 29/Feb/24 $$ \\ $$$$\:\:{prove}\:{that}: \\ $$$$ \\ $$$$\:\:\:\:\sqrt[{\mathrm{4}}]{{e}}\:<\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {e}^{\:{t}^{\mathrm{2}} } {dt}<\:\frac{\mathrm{1}\:+\:{e}}{\mathrm{2}} \\ $$ Answered by witcher3…
Question Number 204826 by necx122 last updated on 28/Feb/24 $${A}\:{rectangular}\:{enclosure}\:{is}\:{to}\:{be}\:{made} \\ $$$${against}\:{a}\:{straight}\:{wall}\:{using}\:{three} \\ $$$${lengths}\:{of}\:{fencing}.\:{The}\:{total}\:{length}\:{of} \\ $$$${the}\:{fencing}\:{available}\:{is}\:\mathrm{50}{m}.\:{Show} \\ $$$${that}\:{the}\:{area}\:{of}\:{the}\:{enclosure}\:{is} \\ $$$$\mathrm{50}{x}\:−\:\mathrm{2}{x}^{\mathrm{2}} ,\:{where}\:{x}\:{is}\:{the}\:{length}\:{of}\:{the} \\ $$$${sides}\:{perpendicular}\:{to}\:{the}\:{wall}.\:{Hence} \\ $$$${find}\:{the}\:{maximum}\:{area}\:{of}\:{the}…
Question Number 204372 by mnjuly1970 last updated on 14/Feb/24 $$ \\ $$$$\:\:{If}\:,\:\:\:\:{f}\::\:\left[\:\mathrm{0}\:,\:{b}\right]\:\overset{{continuous}} {\rightarrow}\:\mathbb{R}\: \\ $$$$\:\:\:\:\:\:\:\:,\:\:\:\:{g}\::\:\mathbb{R}\:\underset{{b}−{periodic}} {\overset{{continuous}} {\rightarrow}}\:\mathbb{R} \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:{lim}_{{n}\rightarrow\infty} \:\int_{\mathrm{0}} ^{\:{b}} {f}\left({x}\right){g}\left({nx}\right){dx}\overset{?} {=}\frac{\mathrm{1}}{{b}}\:\int_{\mathrm{0}} ^{\:{b}} {f}\left({x}\right){dx}\:.\int_{\mathrm{0}}…