Menu Close

Category: Differentiation

Question-118612

Question Number 118612 by rexfordattacudjoe last updated on 18/Oct/20 Answered by 1549442205PVT last updated on 18/Oct/20 $$\mathrm{y}=\mathrm{0}.\mathrm{4x}^{\mathrm{2}} −\mathrm{36x}+\mathrm{1000}= \\ $$$$\frac{\mathrm{4}}{\mathrm{10}}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{90x}+\mathrm{2500}\right)=\frac{\mathrm{2}}{\mathrm{5}}\left[\left(\mathrm{x}−\mathrm{45}\right)^{\mathrm{2}} +\mathrm{475}\right] \\ $$$$\geqslant\frac{\mathrm{2}.\mathrm{475}}{\mathrm{5}}=\mathrm{190} \\…

Question-52945

Question Number 52945 by Tawa1 last updated on 15/Jan/19 Commented by maxmathsup by imad last updated on 15/Jan/19 $$\left.\mathrm{3}\right)\:{let}\:{A}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{ln}^{\mathrm{2}} \left({x}\right)}{{e}^{{x}} −\mathrm{1}}\:{dx}\:\Rightarrow{A}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}\:{e}^{−{x}}…

y-log-x-1-x-2-show-that-x-x-1-2-y-2-x-1-2-y-1-2-

Question Number 52820 by 33 last updated on 13/Jan/19 $${y}\:=\:{log}\left\{\sqrt{{x}}\:+\frac{\mathrm{1}}{\:\sqrt{{x}}\:\:\:}\right\}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$${show}\:{that} \\ $$$${x}\left({x}+\mathrm{1}\right)^{\mathrm{2}} {y}_{\mathrm{2}} \:+\:\left({x}+\mathrm{1}\right)^{\mathrm{2}} {y}_{\mathrm{1}} \:=\:\mathrm{2} \\ $$ Answered by tanmay.chaudhury50@gmail.com last…

Advanced-calculus-prove-that-n-1-1-3-n-n-3-7-8-3-1-6-ln-3-2-pi-2-12-ln-2-

Question Number 118304 by mnjuly1970 last updated on 16/Oct/20 $$\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:\underset{\blacktrinagledown} {\overset{\blacktrinagledown} {\blacklozenge}}\mathscr{A}{dvanced}\:\:{calculus}\underset{\blacktrinagledown} {\overset{\blacktrinagledown} {\blacklozenge}}\:… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\mathrm{3}^{{n}} {n}^{\mathrm{3}}…

Question-118210

Question Number 118210 by bemath last updated on 16/Oct/20 Answered by john santu last updated on 16/Oct/20 $${Reduces}\:{the}\:{equation}\:{of}\:{the}\:{cylinder} \\ $$$${to}\:{r}^{\mathrm{2}} =\mathrm{2}{r}\:\mathrm{cos}\:\theta\:{or}\:{r}\:=\:\mathrm{2cos}\:\theta,\:{in}\:\theta\:\in\:\left[\mathrm{0},\pi\:\right] \\ $$$${The}\:{volume}\:{equals}\: \\ $$$$\int\int\left(\mathrm{8}{x}^{\mathrm{2}}…