Question Number 183710 by Michaelfaraday last updated on 29/Dec/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 118004 by TANMAY PANACEA last updated on 14/Oct/20 $${find}\:\:{value}\:{of}\:{tan}\mathrm{46}^{\mathrm{0}} \:{using}\:{calculus} \\ $$ Answered by mr W last updated on 14/Oct/20 $$\mathrm{46}°=\mathrm{45}°+\mathrm{1}°=\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{180}} \\ $$$$\mathrm{tan}\:\mathrm{46}°=\frac{\mathrm{1}+\mathrm{tan}\:\frac{\pi}{\mathrm{180}}}{\mathrm{1}−\mathrm{tan}\:\frac{\pi}{\mathrm{180}}}…
Question Number 117953 by mnjuly1970 last updated on 14/Oct/20 $$\:\:\:\:\:\:\:\:\:…\:\:\blacktriangleleft{nice}\:\:{integral}\blacktriangleright… \\ $$$$\:\:\:\:{please}\:\:{prove}\:: \\ $$$$ \\ $$$$\:\:\Omega=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {ln}^{\mathrm{2}} \left({cot}\left({x}\right)\right){dx}\:=\frac{\pi^{\mathrm{3}} }{\mathrm{8}}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:…\spadesuit{m}.{n}.\mathrm{1070}\spadesuit… \\ $$ Answered…
Question Number 183447 by greougoury555 last updated on 26/Dec/22 $$\:\begin{cases}{{y}=\mathrm{sec}\:^{{n}} \theta−\mathrm{cos}\:^{{n}} \theta}\\{{x}=\mathrm{sec}\:\theta−\mathrm{cos}\:\theta}\end{cases} \\ $$$$\:{xy}\:'+\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){y}''\:=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 183272 by mathlove last updated on 24/Dec/22 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 117704 by bemath last updated on 13/Oct/20 $$\mathrm{Given}\:\mathrm{a}\:\mathrm{function}\:\psi:\mathbb{R}\rightarrow\mathbb{R} \\ $$$$\mathrm{with}\:\psi\left(\theta\right)\:=\:\theta^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} .\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\frac{\mathrm{d}^{\mathrm{2}} \psi\left(\theta\right)}{\mathrm{dx}^{\mathrm{2}} }\:\:\mathrm{when}\:\theta=\mathrm{8} \\ $$ Commented by prakash jain last…
Question Number 52124 by 786786AM last updated on 03/Jan/19 $$\mathrm{The}\:\mathrm{curve}\:\mathrm{y}\:=\:\mathrm{ax}\:+\:\frac{\mathrm{b}}{\mathrm{2x}−\:\mathrm{1}}\:\mathrm{has}\:\mathrm{the}\:\mathrm{stationary}\:\mathrm{point}\:\mathrm{at}\:\:\left(\mathrm{2},\:\mathrm{7}\right)\:.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:. \\ $$ Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jan/19 $$\mathrm{2}{xy}−{y}=\mathrm{2}{ax}^{\mathrm{2}} −{ax}+{b} \\ $$$${partial}\:{derivative}\:{w}.{r}.{t}\:{x} \\ $$$$\mathrm{2}{y}−\mathrm{0}=\mathrm{4}{ax}−{a}…
Question Number 117557 by abdullahquwatan last updated on 12/Oct/20 $$\mathrm{second}\:\mathrm{derivative} \\ $$$${x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} =\mathrm{5} \\ $$ Answered by Dwaipayan Shikari last updated on 12/Oct/20 $$\mathrm{2}{x}+\mathrm{6}{y}\frac{{dy}}{{dx}}=\mathrm{0}\Rightarrow\frac{{dy}}{{dx}}=−\frac{{x}}{\mathrm{3}{y}}…
Question Number 52006 by peter frank last updated on 01/Jan/19 $${Differentiate}\:\mathrm{sin}^{−\mathrm{1}} \left[\frac{\mathrm{ln}\:{x}}{\mathrm{cos}\:{x}}\right] \\ $$$${with}\:{respect}\:{to}\:\mathrm{tan}\:{x}^{\mathrm{2}} \\ $$ Commented by MJS last updated on 02/Jan/19 $$\mathrm{I}\:\mathrm{get}\:\left(\mathrm{with}\:\mathrm{no}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{anything}\right) \\…
Question Number 117486 by Canovas last updated on 12/Oct/20 Answered by john santu last updated on 12/Oct/20 $$\frac{{dy}}{{dx}}\:=\:\mathrm{2}{x}.\left(\mathrm{2}^{{y}} \right)+{x}^{\mathrm{2}} .\mathrm{ln}\:\left(\mathrm{2}\right).\mathrm{2}^{{y}} \:\frac{{dy}}{{dx}} \\ $$$$\left(\mathrm{1}−\mathrm{ln}\:\left(\mathrm{2}\right){x}^{\mathrm{2}} .\mathrm{2}^{{y}} \right)\frac{{dy}}{{dx}}\:=\:\mathrm{2}{x}.\mathrm{2}^{{y}}…